Connecting the Dots (with Minimum Crossings)

Akanksha Agrawal
Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary, akanksha@sztaki.mta.hu

Grzegorz Guspiel
Jagiellonian University Krakow, Poland, guspiel@tcs.uj.edu.pl

Jayakrishnan Madathil

The Institute of Mathematical Sciences, HBNI, Chennai, India, jayakrishnanm@imsc.res.in

Saket Saurabh

The Institute of Mathematical Sciences, HBNI, Chennai, India, saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beer-Sheva, Israel, meiravze@bgu.ac.il

—— Abstract

We study a prototype CROSSING MINIMIZATION problem, defined as follows. Let F be an infinite
family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in
the Euclidean plane, a collection L C Lines(P) = {¢: £ is a line segment with both endpoints in
P}, and a non-negative integer k, decide if there is a subcollection L' C L such that the graph
G = (P,L’) is isomorphic to a graph in F and L’ has at most k crossings. By G = (P,L’),
we refer to the graph on vertex set P, where two vertices are adjacent if and only if there is a
line segment that connects them in L’. Intuitively, in CROSSING MINIMIZATION, we have a set
of locations of interest, and we want to build/draw/exhibit connections between them (where
L indicates where it is feasible to have these connections) so that we obtain a structure in F.
Natural choices for F are the collections of perfect matchings, Hamiltonian paths, and graphs
that contain an (s, t)-path (a path whose endpoints are labeled). While the objective of seeking a
solution with few crossings is of interest from a theoretical point of view, it is also well motivated
by a wide range of practical considerations. For example, links/roads (such as highways) may be
cheaper to build and faster to traverse, and signals/moving objects would collide/interrupt each
other less often. Further, graphs with fewer crossings are preferred for graphic user interfaces.

As a starting point for a systematic study, we consider a special case of CROSSING MINIMIZ-
ATION. Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based
lower bounds. Specifically, suppose that the input also contains a collection D of d non-crossing
line segments such that each point in P belongs to exactly one line in D, and L does not contain
line segments between points on the same line in D. Clearly, CROSSING MINIMIZATION is the
case where d = n—then, P is in general position. The case of d = 2 is of interest not only
because it is the most restricted non-trivial case, but also since it corresponds to a class of graphs
that has been well studied—specifically, it is CROSSING MINIMIZATION where G = (P, L) is a
(bipartite) graph with a so called two-layer drawing. For d = 2, we consider three basic choices
of F. For perfect matchings, we show (i) NP-hardness with an ETH-based lower bound, (i)
solvability in subexponential parameterized time, and (4i) existence of an O(k?)-vertex kernel.
Second, for Hamiltonian paths, we show (%) solvability in subexponential parameterized time,
and () existence of an O(k?)-vertex kernel. Lastly, for graphs that contain an (s,t)-path, we
show (i) NP-hardness and W[1]-hardness, and (%) membership in XP.

2012 ACM Subject Classification F.2.2 Geometrical problems and computations
Keywords and phrases crossing, parameterized complexity, FPT algorithm, W[1]-hardness

Lines 1924

© Akanksha Agrawal, Grzegorz Guspiel, Jayakrishnan Madathil, Saket Saurabh and Meirav Zehavi;
5v licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:56

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

23:2

31

34

35

36

37

38

39

40

P!

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

75

76

v

78

79

33

Connecting the Dots (with Minimum Crossings)

1 Introduction

Let F be an infinite family of (possibly vertex-labeled) graphs. Suppose that given a graph
F', the membership of F' in F is testable in time polynomial in the size of F. For the family
F, we define a prototype CROSSING MINIMIZATION problem as follows (see Fig. 1). Given
a set P of (possibly labeled) n points in the two-dimensional Euclidean plane, a collection
L C Lines(P) = {¢ : £ is a line segment with both endpoints in P}, and a non-negative integer
k, decide if there exists a subcollection L’ C L such that the graph G = (P, L') is isomorphic!
to a graph in F and L’ has at most k crossings. The notation G = (P, L’) refers to the
graph on vertex set P, where two vertices are adjacent if and only if there is a line segment
that connects them in L’. Moreover, the number of crossings of L’ is the number of pairs of
line segments in L’ that intersect each other at a point other than their possible common
endpoint. The CROSSING MINIMIZATION problem is a general model for a wide range of
scenarios where we have a set of points of interest that correspond to geographical areas or
fixed objects such as cities, manufacturing machinery or immobile equipment, attractions
and mailboxes, and we want to build, draw or exhibit connections between them (where L
indicates where it is feasible to have these connections) in order to obtain a structure in F.

While the objective of seeking a solution with few crossings is of interest from a theoretical
viewpoint, it is also well motivated by practical considerations. For example, public tracks
(such as roads, highways or even paths in amusement parks) with fewer crossings require the
construction of less bridges, elevated tracks, traffic lights and roundabouts, and therefore
they are likely to be cheaper to build [48], easier and faster to traverse [12], and cause less
accidents [23]. Moreover, signals and moving objects would interrupt each other less often.
This property may be crucial as frequent collision between signals can distort or weaken
them [4]. Furthermore, for moving objects such as robots (cleaning robots, autonomous agents
and self-driving cars) that cannot physically be present in an intersection point simultaneously,
encountering a large number of crossings may require the development of more complex
navigation and sensory systems [41]. Lastly, graphs with fewer crossings are easier to view
and analyze—in graphic user interfaces, for example, visual clarity is a major issue [15].

Keeping the above applications in mind, three natural choices for the family F are the fam-
ily of (Hamiltonian) paths, the family of graphs that contain an (s, t)-path (identification of s
and t is modeled by vertex labels), and the family of (possibly vertex-labeled) perfect match-
ings. Indeed, these families model the most basic scenarios where all points must be connected
by a path (e.g., to plan tracks for sightseeing trains or maintenance equipment such as cleaning
robots or lawn mowers), only a specific pair of points must be connected by a path (e.g., to
transport goods between two destinations), or the points are to be matched with one another
(e.g., to pair up robots and charging ports). Furthermore, the computational problems that
correspond to these families—HAMILTONIAN PATH, (s,¢)-PATH and PERFECT MATCHING,
respectively—are among the most classical problems in computer science [24, 31, 21, 13].

As a starting point for a systematic study, we consider a special case of CROSSING
MINIMIZATION. Already for this case, we obtain NP-hardness and W[1]-hardness results, and
ETH-based lower bounds, alongside positive results. Specifically, suppose that the input also
contains a collection D of d non-crossing line segments such that each point in P belongs to
exactly one line in D, and L does not contain line segments between points on the same line

L With respect to vertex-labeled graphs, isomorphism also preserves the labeling of vertices rather than
only their adjacency relationships—that is, a vertex labeled 7 can only be mapped to a vertex labeled 1.

71

72

73

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

100

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Figure 1 An instance of CROSSING MINIMIZATION (in black) where F is the family of (a) perfect
matchings, and (b) graphs that have an (s, ¢)-path. Solution edges are marked by squiggly lines—the
number of crossings is 2 in (a) and 1 in (b). The d = 3 colorful line segments display D.

in D (see Fig. 1).2 Clearly, CROSSING MINIMIZATION is the case where d = n—then, the set
P can be in general position. The case of d = 2 is of interest not only because it is the most
restricted non-trivial case, but also since it corresponds to a class of graphs that has been well
studied in the literature—specifically, this case is precisely CROSSING MINIMIZATION where
G = (P, L) is a (bipartite) graph with a so called two-layer drawing. Clearly, our hardness
results carry over to any generalization of the case where d = 2. For this case, we consider
the aforementioned three basic choices of F, and obtain a comprehensive picture of their

complexity. In what follows, we discuss our contribution, and then review related literature.

1.1 Our Contribution

Our study focuses on the class of two-layered graphs. Formally, a two-layered graph is a
bipartite graph G with vertex bipartition V(G) = X UY that has a two-layer drawing—that
is, a placement of the vertices of X on distinct points on a straight line segment Lq, and the

vertices of Y on distinct points on a different (non-intersecting) straight line segment Lo.

The relative positions of the vertices in X and Y on L; and Lo, respectively, are given by
permutations ox and oy. Each edge is drawn using a straight line segment connecting the

points of its end-vertices. We refer to (0x,0y) as the two-layered embedding/drawing of G.

Note that (ox,o0y) uniquely determines which edges intersect. The crossing minimization

problem that corresponds to PERFECT MATCHING on two-layered graphs is defined as follows.

CROSSING-MINIMIZING PERFECT MATCHING (CM-PM) Parameter: k
Input: A two-layered graph G (i.e., a bipartite graph G with bipartition V(G) = X UY,
and orderings ox and oy of X and Y, respectively), and a non-negative integer k.
Question: Does G have a perfect matching with at most k crossings?

Similarly, we define the crossing minimization variants of HAMILTONIAN PATH (the
existence of a path that visits all vertices)® and (s,¢)-PATH (the existence of a path between

2 Having lines segments between points on the same line in D only makes the problem more general.
3 We remark that our results for HAMILTONIAN PATH extend to HAMILTONIAN CYCLE.

23:3

CVIT 2016

23:4

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Connecting the Dots (with Minimum Crossings)

two designated vertices). We refer to these problems as CROSSING-MINIMIZING HAMILTONIAN
PaTH (CM-HP) and CROSSING-MINIMIZATION (s,t)-PATH (CM-PATH), respectively.

Our Results. In this paper, we present a comprehensive picture of both the classical and
parameterized computational complexities of these three problems as follows. (Definitions of
standard notions in Parameterized Complexity can be found in Section 2.)

CM-PM.
e Negative. NP-complete even on graphs of maximum degree 2. Moreover, unless the ETH
fails, it can be solved neither in time 2°(»+™) nor in time 20(VE) RO on these graphs.
o Positive. Admits a kernel with O(k?) vertices. Moreover, it admits a subexponential

o@).

parameterized algorithm with running time 20(VR)p, In light of the negative result

above, the running time of this algorithm is optimal.

We briefly remark that the proof of NP-completeness of CM-PM resolves an open
question related to a problem called TOKEN SWAPPING (see Section 1.2), introduced in 2014
by Yamanaka et al. [54, 1]. Two generalizations of TOKEN SWAPPING were introduced by
Yamanaka et al. [54, 1] and Bonnet et al. [8], both known to be NP-complete due to Miltzow
et al. [44]. One of the results of Bonnet et al. [8] is the analysis of the complexity of all three
token swapping problems on simple graph classes, including trees, cliques, stars and paths.
SUBSET TOKEN SWAPPING was shown to be NP-complete on the first three classes, but the
status of the problem for paths was unknown. Since SUBSET TOKEN SWAPPING restricted to
paths is equivalent to our CM-PM (noted by Miltzow [43]), we derive that SUBSET TOKEN
SWAPPING restricted to paths is NP-complete as well.

CM-HP.

e Negative. NP-complete even on graphs that admit a Hamiltonian path. Moreover,
unless the ETH fails, it can be solved neither in time 2°("+™) nor in time 20(VE)p0(1) on
these graphs.

o Positive. Admits a kernel with O(k?) vertices. Moreover, it admits a subexponential
parameterized algorithm with running time 20(Vklog k), O(1) - Ip light of the negative
result above, the running time of this algorithm is almost optimal.

While HAMILTONIAN PATH is a classical NP-complete problem [24], we prove that in the
case of CM-HP, the hardness holds even if we know of a Hamiltonian path in the input graph
(in which case HAMILTONIAN PATH is trivial). We also comment that in the case of CM-HP
(and also CM-PatHh), unlike the case of CM-PM, the problem becomes trivially solvable
in polynomial time on graphs of maximum degree 2. Indeed, graphs of maximum degree 2
are collections of paths and cycles, and hence admit only linearly in n many Hamiltonian
paths that can be easily enumerated in polynomial time. Then, CM-HP is solved by testing
whether at least one of these Hamiltonian paths has at most k crossings. In fact, most natural
NP-complete graph problems become solvable in polynomial time on graphs of maximum
degree 2, therefore we find the hardness of CM-PM on these graphs quite surprising.

CM-PATH.

130

132

133

134

135

136

137

138

139

140

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

127

129

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

e Negative. NP-complete and W[1]-hard. Specifically, unless W[1] = FPT, it admits
neither an algorithm with running time f(k)n®®) nor a kernel of size f(k), for any
computable function f of k.

e Positive. Member in XP. Specifically, it is solvable in time n®®).

In light of our first two sets of results, we find our third set of results quite surprising:
(s,t)-PATH is the easiest to solve among itself, PERFECT MATCHING and HAMILTONIAN
ParH,* yet when crossing minimization is involved, (s,t)-PATH is substantially more difficult
than the other two problems—indeed, CM-PM is not even FPT (unless W[1] = FPT).

Our Methods. In what follows, we give a brief overview of our methods.

CM-PM. We prove that CM-PM on graphs of maximum degree 2 is NP-hard by a reduction
from VERTEX COVER. The same reduction shows that CM-PM does not admit any 2°(+m)-
time (or 20(\/%)n0(1)—time) algorithm unless the ETH fails.

For our algorithm and kernel, consider an instance (G, k) of CM-PM, where V(G) = XUY
is the vertex bipartition with |X| = |Y| = n. For i € [n], let x; and y; denote the i*" vertices
of X and Y, respectively, in the given two-layered embedding of G. It is not difficult to see
that the only perfect matching with no crossings, if such a matching exists, is {z;y; | ¢ € [n]}.
Therefore, if M is a perfect matching and z;y; € M with ¢ # j, then the edge x;y; must
intersect another edge in M, which yields a crossing. In fact, z;y; must intersect at least
|7 —i| edges. Therefore, no feasible solution to CM-PM can contain an edge z;y; with
|7 — i] > k. This observation plays a key role in both our algorithm and kernel designs. Our
algorithm is based on dynamic programming, and its analysis is based on Hardy-Ramanujan
numbers [28]. (By considering these numbers, we are able to derive a running time bound of
(’)*(20(‘/%)).) Very briefly, at stage ¢« we consider the graph G;, the subgraph of G induced
by X; UY; = {z;,y; | j <i}. Our algorithm “guesses” which subsets of V(G;) are going to
be matched to “future vertices”, i.e., vertices in V(G) \ V(G;) in an optimal solution, and
solves the problem optimally on the graph induced by the remaining vertices. For the kernel,
we show that either (G, k) is a no-instance or the number of “bad pairs”, i.e., {z;,y;} where
z;y; ¢ E(G), cannot exceed 2k. We then bound the number of pairs {z;,y;} between two
consecutive bad pairs by O(k) again, which gives a kernel with O(k?) vertices.

CM-HP. By a reduction from a variant of HAMILTONIAN PATH on bipartite graphs, we
show that CM-HP is NP-hard even if the input graph is assumed to have a Hamiltonian
path. For our FPT algorithm and kernel, we adopt a strategy similar to the one we employed
for CM-PM. For the algorithm, we guess which subsets of G; have a neighbor in the future,
and proceed accordingly. As for the kernel, we identify a set of bad structures—mnamely,
configurations of vertices and edges that result in crossings in any Hamiltonian path in G.
We show that both the number and the size of bad structures cannot exceed O(k). Then
we bound the number of vertices between two consecutive bad structures by O(k) as well,
which gives a kernel with O(k?) vertices.

CM-PATH. We prove the W[1]-hardness of CM-PATH by giving an appropriate reduction

from MULTI-COLORED CLIQUE, which is known to be W[1]-hard [22]. Given an instance
(G, V1, Va, ..., Vi) of MULTI-COLORED CLIQUE (G is a k-partite graph, and the problem

4 Tn particular, (s,t)-PATH can be directly solved in linear time via BFS [13], while PERFECT MATCHING is
only known to be solvable by more complex (non-linear time) algorithms such as Edmonds algorithm [21],
and the status of HAMILTONIAN PATH is even worse given that it is NP-complete [24].

23:5

CVIT 2016

23:6

167

168

169

170

171

172

173

174

175

176

177

178

179

180

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

204

205

206

207

208

209

210

183

Connecting the Dots (with Minimum Crossings)

is to check whether G contains a clique with exactly one vertex from each V;), we create
an equivalent instance (G, X,Y, s, t, k') of CM-PATH, where G’ is a two-layered graph, as
follows. We create an s-t path in G’ that “selects” a vertex from each V; and an edge for
each (distinct) pair (V;,V;). To this end, for each V;, we have a vertex selection gadget V;,
and for (distinct) V;, Vj}, we have an edge selection gadget &;;. The vertex and edge selection
gadgets are arranged in a linear fashion to create an s — ¢ path in G’. In the construction,
we add a pair of non-adjacent vertices in &;; for each edge between V; and V;. We also add a
path between the pair of (non-adjacent) vertices whose edges cross the gadgets V; and V;,
which enforces compatibility between vertices and edges that are selected. Finally, by setting
k' appropriately, we get the desired reduction.

As for the XP algorithm for CM-PATH, we guess which edges of G are going to be involved
in crossings in a feasible solution. The problem then reduces to connecting these guessed
edges using crossing-free subpaths, which can be done in polynomial time.

1.2 Related Works

The Crossing Number Problem. The crossing number of a graph G is the minimum
number of crossings in a plane drawing of G. The notion of a crossing number originally
arose in 1940 by Turan [52] for bipartite graphs in the context of the minimization of the
number of crossings between tracks connecting brick kilns to storage sites. Computationally,
the input of the CROSSING NUMBER problem is a graph G and a non-negative integer k, and
the task is to decide whether the crossing number of G is at most k. This problem is among
the most classical and fundamental graph layout problems in computer science. It was shown
to be NP-complete by Garey and Johnson in 1983 [25]. Not only is the problem NP-complete
on graphs of maximum degree 3 [29], but also it is surprisingly NP-complete even on graphs
that can be made planar and hence crossing-free by the removal of just a single edge [9].
Nevertheless, CROSSING NUMBER was shown to be FPT by Grohe already in 2001 [26], who
developed an algorithm that runs in time f(k)n? where f is at least double exponential.> A
further development was achieved by Kawarabayashi and Reed [36], who showed that the
problem is solvable in time f(k)n. On the negative side, Hlineny and Dernar [30] proved
that CROSSING NUMBER does not admit a polynomial kernel unless NP CcoNP/poly.
Variants of CROSSING NUMBER where the vertices can be placed only on prespecified
curves are extensively studied. Closely related to our work is the well-known TwoO-LAYER
CROSSING MINIMIZATION problem: given a bipartite graph G with vertex bipartition
V(G) = X UY, and a non-negative integer k, the task is to decide whether G admits a
two-layered drawing where the number of crossings is at most k. This problem originated
in VLSI design [50]. A solution to the TwWo-LAYER CROSSING MINIMIZATION problem is
also useful in solving the rank aggregation problem, which has applications in meta-search
and spam reduction on the Web [7]. We refer the reader to [55] and references therein for
other applications. The TwoO-LAYER CROSSING MINIMIZATION problem is long known to
be NP-complete, even in its one sided version where we are allowed to permute vertices
only from one (fixed) side [19, 20]. Further, the membership of Two-LAYER CROSSING
MINIMIZATION in FPT has already been proven close to two decades ago by Dujmovic et
al. [18]. Noteworthy is also the well-studied variant of CROSSING NUMBER that restricts
the vertices to be placed only on a prespecified circle and edges are drawn as straight line

5 We find the contrast between this result and our result on CM-PATH somewhat surprising. At first
glance, our CM-PATH problem seems computationally simpler than CROSSING NUMBER (where the
embedding is computed from scratch), yet our problem is W[1]-hard while CROSSING NUMBER is FPT.

213

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

252

253

254

255

256

257

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

segments. Both of these variants as well as their various versions are subject to an active line
of research [37]. Further, aesthetic display of these layouts are of importance in biology [40],
and included in standard graph layout software [35] such as yFiles, Graphviz, or OGDF. For
more information on CROSSING NUMBER and its variants, we refer to surveys such as [49].

Problems on Fixed Point Sets. Settings where we are given a set of points P in the
plane that represent vertices, and edges are to be drawn as straight lines between them,
are intensively studied since the early 80s. A large body of work has been devoted to
the establishment of combinatorial bounds on the number of crossing-free graphs on P,
where particular attention is given to crossing-free triangulations, perfect matchings and
Hamiltonian paths and cycles. Originally, the study of these bounds was initiated Newborn
and Moser in 1980 [47] for crossing-free Hamiltonian cycles. For more information, we refer to
the excellent Introduction of Sharir and Welz [51] and the references therein. Computationally,
the problem of counting the number of such crossing-free graphs (faster than the time required
to enumerate them) is of great interest (see, e.g., [53, 5, 42]). Furthermore, the computation
of a single crossing-free graph on P (such as a perfect matching), possibly with a special
property of being “short” [3, 2, 11], has already been studied since 1993 [34]. To the best of
our knowledge, the minimization of the number of crossings (rather than the detection of
a crossing-free graph) has received only little attention, mostly in an ad-hoc fashion. An
exception to this is the work of Halldérsson et al. [27] with respect to spanning trees. We
remark that they study the problem in its full generality, where the computation of even a
crossing-free spanning tree is already NP-complete [38, 34].

Related to our study is also the METRO LINE CROSSING MINIMIZATION problem, in-
troduced by Benkert et al. [6] in 2007. Given an embedded graph G on P, as well as k
pairs of vertices (called terminals), a solution to this problem is a set of paths that connect
their respective pairs of terminals, and which has minimum number of “crossings” under a
definition different than ours. Specifically, paths are thought of as being drawn in the plane
“alongside” the edges of G rather than on the edges themselves. Such a formulation allows
to reuse a single edge a large number of times. Therefore, the avoidance of crossings might
come at the cost of congesting the same tracks by buses and trains (or building many parallel
tracks). Finally, we mention the TOKEN SWAPPING problem, where we are given a graph
with a token placed on each vertex, and each token has a unique target vertex. The objective
is to move the tokens with minimum number of swaps so that each token is placed on its
target vertex. We remind that this problem was discussed in Section 1.1. Although it seems
unrelated to our study, recall that a variant of it is equivalent to CM-PM [43].

2 Preliminaries

Sets and functions. We use N to denote the set {0,1,2,...}. For n € N, [n] denotes the set
{1,2,3,...,n}, and [n]o = [n] U {0}. We define [0] = (. For a set A, 2 denotes the power
set of A. For sets A, B, A’ C A and a function f: A — B, f|as denotes the restriction of f
to A’. That is, f|a is the function from A’ to B, defined as f|a/(z) = f(z) for every x € A’.

Graphs. All graphs in this paper are simple and undirected. For a graph G, V(G) and
E(G), respectively, denote the vertex set and edge set of G. For an edge e = uwv, the vertices u
and v are called the endpoints of e. For a set £’ C E(G), V(E’) denotes the set of endpoints
of edges in E’. A set of edges M C E(G) is said to be a matching in G if for every pair of
distinct edges e, e’ € M, V({e}) NV ({e'}) = 0. A matching M C E(G) is said to saturate a
vertex v € V(G) if v € V(M). Moreover, M is said to saturate a set of vertices V' C V(G) if

23:7

CVIT 2016

23:8

258

259

260

262

263

265

266

267

268

269

270

278

279

280

281

288

289

290

291

292

293

294

296

297

298

300

301

Connecting the Dots (with Minimum Crossings)

V' C V(M). A matching M in G is said to be a perfect matching if M saturates the entire
vertex set V(G). An ordered sequence P of distinct vertices vyvs . .. v, is said to be a path in
G if v;v;41 € E(G) for every i € [r — 1]. We refer to vertices v; and v, as the end vertices
or terminal vertices of the path P, and vertices vo,vs,...,v,_1 as the internal vertices of
the path P. For every i € [r], we say that the path P visits (or passes through) the vertex
v;. A path in G is called a Hamiltonian path if it visits every vertex of G. Terminology and
notation not defined here can be found in the book of Diestel [16].

Two-layered graphs. Consider a two-layered graph G. Whenever the context is clear, we
denote the vertex bipartition of G (given by the two-layer drawing) by X and Y. We use
nx and ny to denote |X| and |Y|, respectively. For i € [nx], we let x; be the ith vertex
of X and for j € [ny], we let y; be the jth vertex of Y, in the two-layered drawing of G.
Also, we say that ¢ is the index of the vertex z; and j is the index of the vertex y;. We write
index(z;) =4 and index(y;) = j. Similarly, we let X; denote the set {z, | 1 <r <}, and
we let Y; denote the set {y, | 1 <r < j}. For ¢,j € [nx], where ¢ < j, the set X; ; denotes
the set {z, | © <p < j}. Moreover, if i < j, then the set X;; = 0. (Note that X, ; is not the
same as X ;, unless ¢ = j.) The set Y; ; is defined analogously for i, j € [ny]. A crossing in
G is a pair of edges that intersect at a point other than their possible common endpoints.
Note that two edges x;y; and x,y,, where i,7 € [nx] and j,s € [ny], form a crossing (or,
cross each other) if and only if ¢ < j,r >4,j > sorr <s,i>r s> j. We say that an edge
e € FE(QG) participates in a crossing if there is another edge ¢’ € F(G) such that e and ¢’
cross each other. Similarly, we say that a vertex v € V(G) participates in a crossing if v is an
endpoint of an edge that participates in a crossing. For a subgraph H of G, cr(H) denotes
the number of crossings in H. Similarly, for a set of edges E' C E(G), cr(E’) denotes the
number of crossings in the subgraph induced by E’.

Parameterized Complexity. In the framework of parameterized complexity, each problem
instance is associated with a non-negative integer k, called a parameter. A problem is
said to be fized-parameter tractable (FPT) if it admits an algorithm with running time
f (k)no(l) time for some computable function f, where n is the input size. Moreover, if the
problem is solvable in time n9), then it is said to admit an XP algorithm. A companion
notion of fixed-parameter tractability is that of kernelization. A kernelization algorithm is
a polynomial-time algorithm that transforms an arbitrary instance of the problem to an
equivalent instance of the same problem whose size is bounded by some computable function
g of the parameter of the original instance. The resulting instance is called a kernel, and if g
is a polynomial function, then it is called a polynomial kernel, and we say that the problem
admits a polynomial kernel. Parameterized complexity provides a theory of intractability
as well, which enables us to show that certain problems are unlikely to be fixed-parameter
tractable. This is done by giving an appropriate reduction from a so called W-hard problem.

To obtain (essentially) tight conditional lower bounds for the running time of FPT or XP
algorithms, we rely on the well-known Exponential-Time Hypothesis (ETH) [32, 33, 10]. To
formalize the statement of ETH, recall that given a formula ¢ in conjunctive normal form
(CNF) with n variables and m clauses, the task of CNF-SAT is to decide whether there is a
truth assignment to the variables that satisfies ¢. In the p-CNF-SAT problem, each clause
is restricted to have at most p literals. ETH states that 3-CNF-SAT cannot be solved in
time 2°("). Additional details on parameterized complexity and ETH can be found in [14, 17].

315

302

303

304

305

306

307

308

309

310

311

312

313

314

316

317

318

319

320

321

322

323

324

325

326

327

328

330

331

332

333

334

335

336

337

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

POCCIAINK

Figure 2 The vertex gadget of size 3.

QPr—)

=
[N
|
w i
no
i

3 NP-hardness, FPT Algorithm and Polynomial Kernel for
CROSSING-MINIMIZING PERFECT MATCHING

In this section, we show that CM-PM is NP-hard, but can be solved in time 20(Vk) p0(1)
using an algorithm based on dynamic programming. We also design an O(k?) vertex kernel
for CM-PM. The problem is formally defined as follows.

CROSSING-MINIMIZING PERFECT MATCHING (CM-PM) Parameter: k
Input: A two-layered graph G and a non-negative integer k.
Question: Does G have a perfect matching with at most k crossings?

3.1 NP-hardness for CM-PM

We show that CM-PM is NP-hard, even if the maximum degree of the input graph is 2. Our
proof of NP-hardness is a polynomial-time reduction from VERTEX COVER. The problem
VERTEX COVER takes as input a graph G and an integer k, and the objective is to check
if there is S C V(QG) of size k, such that G — S has no edges (in other words, S is a vertex
cover in G). VERTEX COVER is known to be NP-hard from [39].

» Theorem 1. CM-PM is NP-hard, even if the mazimum degree of the input graph is 2.

Proof. We give a reduction from the VERTEX COVER problem. Let (G, k) be an instance
of VERTEX COVER. In polynomial time, we will create an (equivalent) instance (H,m) of
CM-PM. Our construction will be based on two gadgets. The first one is created for every
vertex of G. For every integer s > 1, the vertex gadget of size s is a cycle on 8s vertices
together with a path on 2 vertices, positioned as shown in Figure 2. We distinguish special
areas in the vertex gadget, in which we put other elements of our construction. These areas

are called slots and are marked with gray rectangles. We also number them as in the figure.

The ones to the left of the purple edge are called left slots and the ones to the right are
called right slots. The vertex gadget of size s has s left slots and s right slots. Furthermore,
observe that there are only two ways to choose a perfect matching in this gadget: either take
the blue edges and the purple edge in the middle, or the yellow edges and the purple one.
Choosing the blue (the yellow) matching is interpreted as selecting (not selecting) the vertex
in the vertex cover and we say that the gadget is ‘selected’ (‘not selected’).

The second gadget, the edge gadget, is created for every edge of G. It is shown in Figure 3.

The construction proceeds as follows. First, for every v € V(G), we create a copy of
the vertex gadget of size 2d(v). We place them on the two horizontal lines in such a way
that each gadget occupies a separate range of the z axis, in any order. Now, for every edge
wv € E(G), where the gadget of u is to the left of the gadget of v, we select two consecutive
right slots in the gadget of u and two consecutive left slots in the gadget of v, create a copy
of the edge gadget and place its vertices as follows:

23:9

CVIT 2016

23:10

343

338

339

340

341

344

345

346

347

353

354

355

356

357

358

360

361

Connecting the Dots (with Minimum Crossings)

Figure 3 The edge gadget.

Figure 4 A graph G and a possible bipartite graph obtained by passing G to the reduction
algorithm, vertex gadgets presented schematically.

e vertices a and b in the left selected slot of the gadget of u,

e vertex c in the right selected slot of the gadget of u,

e vertex d in the left selected slot of the gadget of v,

e verticed e and f in the right selected slot of the gadget of v.

Such a selection of consecutive slots for each edge is of course possible, as we set the size
of the vertex gadget to be 2d(v). See Figure 4 for a complete example. The edge gadget
admits exactly two perfect matchings as well and just like previously, we give interpretations
to these matchings. If the red (green) matching is selected, we say that the edge gadget
is ‘covered’ at the right (left) side and ‘not covered’ at the left (right) side. Our naming
convention may be confusing, as in the case of vertex covers, an edge may be covered at both
sides, and our edge gadgets are always ‘not covered’ at one side. The property that we want
to enforce is as follows: in every optimal solution, when the edge gadget is ‘covered’ at one
side, the corresponding vertex gadget must be ‘selected’, and when the edge gadget is ‘not
covered’ at this side, the vertex gadget may be either ‘selected’ or ‘not selected”.

Now, we assume that the positions of all the gadgets are fixed and count the number of
crossing edges. In our analysis, we are only interested in how this number changes when a
different matching is chosen, and for this reason we introduce constants ¢y, ¢, ... that are
dependent on the way the gadgets were assembled on the two horizontal lines, but not on
the choice of matching. First, we count such crossings, where an edge of the vertex gadget
crosses another edge of the same vertex gadget. As the vertex gadget of size s admits 2s + 1
crossings if ‘selected” and 2s otherwise, this number is equal to:

#s+ > 2-2d(v) =#s+a,

veV(G)

where #s is the number of ‘selected’ vertex gadgets.

The number of crossings between edges of edge gadgets turns out to be independent of
the matching chosen and we denote it by cs. To see this, first observe that the number of
crossings inside the edge gadget is always 1. Second, note that for two different copies of the
edge gadget, the number of crossings between them is either 0, 1, 2 or 3, but in all cases it is
independent of the choice of the matching.

368

369

370

372

373

374

375

376

377

378

379

380

382

383

384

385

386

387

388

389

390

392

393

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

vertex selected,
edge covered

vertex selected,
edge not covered

vertex not selected,
edge covered

vertex not selected,
edge not covered

Figure 5 The 4 possible configurations of a crossing of the right part of the vertex gadget and
the left part of the edge gadget.

It remains to count the number of crossings such that one edge belongs to the vertex
gadget and the other to the edge gadget. Fix v € V(G) and e € E(G). We count crossings
between edges of the vertex gadget of v and edges of the edge gadget of e. If v ¢ {u/,v'},
where e = u/v’, then this number is independent of the choice of the matching. Hence, we
denote the number of such crossings between every vertex gadget and every edge gadget by
cs. Now assume that v € {u/,v'}. As the vertex gadget and the edge gadget admit 2 possible
perfect matchings each, we have 4 possibilities, as listed in Figure 5. The figure does not lose
generality: in the figure, we are considering the right part of the vertex gadget and the left
part of the edge gadget, but the analysis is the same in the opposite case. Let s, s+ 1 be the
numbers of the two slots in the vertex gadget of v occupied by vertices of the edge gadget of
e. The number of crossings between edges of the gadget of v and edges of the gadget of e is
equal to:

e 2(s—1)+1 =1+ ¢4 in the ‘vertex selected, edge covered’ case,

e 2(s — 1)+ 5 =15+ ¢4 in the ‘vertex selected, edge not covered’ case,

e 2(s — 1)+ 3 =3+ ¢4 in the ‘vertex not selected, edge covered’ case,

e 2(s — 1)+ 5 =5+ ¢4 in the ‘vertex not selected, edge not covered’ case.

Let the variables #sc, #snc, #nsc, #nsnc count occurences of each of the four cases above
in the entire graph H, respectively. The total number of crossing edges (allowed) is equal to:

#s+c1+co+ ez + (L4 ca)Ftsc + (3 + ca)#nsc + (5 + cq)#snc + (5 + c4)F#nsnc.

However, as every edge gadget must be ‘covered’ at one side and must ‘not be covered’ at the
other, we have #sc + #nsc = #snc + #nsnc = |E(G)| and hence the calculation simplifies to

#s+c1+catcg+2-#nsc+ (14 ca)|E(G)| + (5+ ca)|E(G)| = #s + 2 - #nsc + cs.

To complete the description of the reduction algorithm, we set m = k + cs.

23:11

CVIT 2016

23:12

394

395

396

397

398

399

400

401

402

403

405

406

407

408

409

410

412

413

414

415

416

432

433

434

435

436

438

439

Connecting the Dots (with Minimum Crossings)

It is straightforward to implement the reduction algorithm in polynomial time. It remains
to prove that G admits a vertex cover of size k if and only if H admits a perfect matching
with at most m crossings.

First suppose that G admits a vertex cover C' of size at most k. Then one can choose
the ‘selected’” perfect matching for vertex gadgets of every vertex in C and the ‘not selected’
perfect matching for every other vertex. Moreover, as every edge of G is covered, one can
choose perfect matchings in edge gadgets so that their ‘covered’ side is in a ‘selected’ vertex
gadget. Then #nsc = 0 and the number of intersecting edges is equal to #s+c¢5 < k+c¢5 = m,
so H admits a perfect matching with at most m crossings.

For the second implication, assume that H admits a perfect matching with at most m
crossings. Let M be any matching with minimal number of crossings. Observe that #nsc = 0,
as if there exists a vertex gadget that is ‘not selected’ and intersects a ‘covered’ edge gadget,
one can choose the vertex gadget to be ‘selected’ instead, and achieve a perfect matching
with fewer crossings, which contradicts the minimality of M. Now we construct a vertex
cover of G: we select exactly the vertices whose vertex gadgets were ‘selected’. To see that
this is a vertex cover, fix an edge of G. At the ‘covered’ side of its edge gadget, the vertex
gadget is ‘selected’, because #nsc = 0. Thus, the corresponding vertex is selected to the
cover. Finally, as the number of crossings in our construction is equal to #s + ¢5 and is at
most m, the size of the vertex cover, equal to #s, is at most m — ¢5 = k. <

Observe that in the proof above, the size of the CM-PM instance is linear in the size of the
VERTEX COVER instance. Indeed, for every vertex v € V(G) we produce 16d(v) + 2 vertices
of H, and for every edge of G, six vertices are produced. Hence, the number of vertices in the
graph H, outputted by the reduction algorithm, is bounded by O(|V(G)| + |E(G)]|). As the
vertices in H are of degree at most 2, we have |E(H)| € O(|V(G)| + |E(G)|). We note that
VERTEX COVER does not admit an algorithm running in time 2°(V(OHIE(G)]) (assuming
the Exponential Time Hypothesis), Theorem 14.6 in [14]. From the above discussions, we
can conclude that CM-PM does not admit an algorithm running in time 200V UDHIEE)D)

3.2 FPT Algorithm for CM-PM

Let (G, k) be an instance of CM-PM, with vertex bipartition X and Y, where |X| = |Y| = n.
(Here, we note that if | X| # |Y| then (G, k) is a no-instance as it does not admit a perfect
matching.) We will design an FPT algorithm for CM-PM running in time 200Vk) 0 - Our
algorithm will be a dynamic programming algorithm which processes the graph from left to
right. That is to say, for each i = 1,2,...,n, at stage i, we consider the graph G; = G[X,;UY}],
the graph induced by {z1,...,%;,y1,...,¥:}, and solve a family of subproblems, the solution
to one of which will lead to an optimal solution of the entire graph G. We will bound the
number of sub-instances that we need to solve at each stage i, for i € [n], by 20(VR) | To
achieve the above, we will use the well known bound on partitions of an integer (and in,
particular, partitions where all numbers are distinct). (For the integer 6, a partition of it is
142+ 3.) We will rely on the fact that for a number ¢, we can compute all its partitions in
time bounded by 20(V1) The above bound will be crucial to achieve the running time of our
algorithm.

We first explain the intuition behind our algorithm. Suppose (G, k) is a yes-instance and
let M be a perfect matching of G with cr(M) < k. Fix ¢ € [n]. Consider how M saturates
the “future vertices,” i.e., vertices in X;y1, UYjt1,,. Consider a future vertex, say x; for
some j > 4. Using the fact that cr(M) < k, we will show that M cannot match z; to a
vertex in Y; . Therefore, the only vertices in X; UY; that can possibly be matched to

440

442

443

444

445

446

447

448

449

450

451

452

453

454

456

457

458

459

460

461

462

463

464

466

467

468

469

470

472

473

474

475

476

477

478

479

480

486

487

488

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

vertices in the future belong to X;_;4+1 UY;_r4+1. In other words, while doing a dynamic
programming from left to right, by the time we get to stage i, the intersection of the potential
solution with X;_j UY;_j is completely determined. This observation suggests the most
obvious strategy: at stage 4, “guess” how the solution matches (and saturates) the vertices
in X p41,UY;_rt1,. But this strategy will only lead to an algorithm running in time
EC®pOM) Observe that since we are only interested in a matching with the least possible

number of crossings, we need not look at all possible matchings in G[X;_x+41,; U Yi_p+1.4]-

We only need to look at which subsets of X; 541, and Y;_;41; are saturated by M. Thus,
from each collection of matchings that saturate the same subset of X;_p11,; U Yi_p41,:, we
remember the matching that incurs the least number of crossings. This observation can be
used to obtain an algorithm running in time 20®) M),

time, we show that the number of subsets of X;_jy1,;UY;_jy1, that are not saturated by

To further improve this running

the intersection of any potential solution with X; UY; cannot exceed 20(Vk) (This is where
we will use the bound that the number of partitions of an integer ¢ is bounded by 20(‘/2).)
This will lead us to an algorithm with the claimed running time for the problem.

We start by giving some notations and preliminary results that will be helpful in designing
our algorithm.

Notations and Preliminary Results

A matching M of G is said to saturate a vertex v € V(G) if M contains an edge incident on
v. Moreover, M is said to saturate a set of vertices V' C V(G) if M saturates every vertex
in V. We let Sat(M) = {u,v | uv € M}. That is, Sat(M) is the set of vertices saturated
by M in GG. The analysis of our algorithm requires an important result pertaining to the
partitions of an integer. We introduce it below.

Partitions of an integer. For a positive integer «, a partition of « refers to writing « as a
sum of positive integers (greater than zero), where the order of the summands is immaterial.
And each summand in such a sum is called a part of a. For example, take o = 16; then
16 =1+ 4+ 4+ 7 is a partition of 16. Note that here two of the parts (the two 4s) are the
same. We, however, are interested in only those partitions of a in which the parts are all
distinct. Let us call such partitions distinct-part partitions. As the numbers appearing in a
distinct-part partitions of a number are all distinct, we can use the set notation instead. For
example, {1,2,6,7} is a distinct-part partition of 16. We use letters P, Py, Py etc. to denote a
partition (in set form) of a number.

> Lemma 2 ([28]). There exists a constant ¢ > 0 such that the number of partitions,
and hence the number of distinct-part partitions of any positive integer k, is at most 2eVk,
Moreover, given any positive integer k as input, we can generate all partitions, and hence all
distinct-part partitions, of all integers c, where o < k, in time 20(Vk) |

Some important sets for the algorithm. For i € [n], we let X; = {Zi—kte | € € [k] and i —
k+¢>1} and Y; = {Yi—k+e | £ € [k] and i — k+ £ > 1}. We will argue that in any perfect
matching M in G with cr(M) < k, the vertices from X; which are matched to a vertex ys,
with s > 7 4+ 1, belong to the set)A(l Similarly, we can argue that ffz is the set of vertices
from Y; which can possibly be matched to vertices xg, with s > 7 + 1.

We will now associate costs to vertices (and subsets) of X; (resp. Al)7 which will be helpful
in obtaining lower bounds on the number of crossings, when vertices from X; (resp. 371) are
matched to vertices ys (resp.), where s > i + 1. To this end, consider ¢ € [n] and a vertex

23:13

CVIT 2016

23:14

485

496

497

498

499

500

501

502

509

510

511

512

515

516

517

518

Connecting the Dots (with Minimum Crossings)

Xs _———--.Qg 8
. L | /” -~ SN
1 Lz T3 T4 L5 Te Ty Isg To Ty xz T3 x4 Tz Te D x7 1 Ty g Tg
e o o o o o o ! e o o o 06 o010 ,0,0
""""" 4 3 1 1

s
w (b) k= 4. Q = {ws,m6,a8} C Xs.
w1 (a) The dashed rectangles sz The number below each z; € Q shows
w2 show Y3 and Xg, when k = 4. a3 cstg(z;). CstSets(Q) = {4,3,1} and
483 s cstg(Q) = 8.

Figure 6 An example of)?i, lA/i, QC)?i, CstSet;(Q) and cst; (Q).

T, €)?Z We let cst;(z,) =i+ 1—r. Since z, €)A(Z—, we have r < ¢, and thus, cst;(z,) > 1.
For a subset Q C X, we let CstSet;(Q) = {cst;(z) | z € @} and csti(Q) = >, o csti(x).
Similarly, for ¢ € [n] and a vertex y, € 171', we let csti(y,) =i+ 1 —r > 1. Moreover,
for a subset Q C Y;, we let CstSet;(Q) = {cst;(y) | y € Q} and cst;(Q) >yeo Csti(y)-
We note that, for each ¢ € [n], we have cst;(0) = 0. In order to understand the intuition
behind these definitions, look at the ith stage in our dynamic programming algorithm. At
stage i, we consider the graph G[X; UY;]. Consider the vertices in)?Z that are matched
to vertices in the future (i.e., vertices y, where s > 7). Note that if z; gets matched to

a future vertex, then z; participates in at least one crossing (in the final solution), and
if x;_1 gets matched to a future vertex, then x;_; participates in at least two crossings
and so on. In particular, z, €)A(i, if matched to a future vertex participates in at least
i+ 1 —r crossings. So, cst;(z,) is a lower bound on the number of crossings in which x,.
participates (or cost incurred by z,.) if it gets matched to a future vertex. For a set Q C)A(i7
CstSet; (@) is the set of minimum costs incurred by each element of (). Moreover, cst;(Q)
is the cost incurred by @ if all its elements get matched to future vertices. Now using the
notion of distinct-part partitions of an integer, we introduce some “special” sets of subsets
of X and Y, respectively. These sets will be crucially used while creating the sub-instances
in our dynamic programming algorithm. For a € [k], let P, be the set of all distinct-part
partitions of . Furthermore, let Pg = Use[k] Pa- From Lemma 2, we have |[P<| = 20(Vk),
Consider i € [n], a € [k], and P € P<,. We let S (P) = {z;41-p|B€Pandi+1— > 1}.
(For example, for P = {1,2,6,7,8} and i = 6, we have S%(P) = {zg,75,21}.) Note that
St (P) C Xi, CstSet;(S%(P)) = P, and cst;(S% (P)) = «, where P is a partition of o € [].
Similarly, we define Si (P) = {yiy1_5 | B €Pandi+1— > 1} CY,. Again, note that
CstSet; (S%(P)) = P and cst;(S% (P)) = a.

We let Sy = {S%(P) |P € P<i} U{D} C 2% and S% = {Si(P) |P € P} U {0} C 2%,
Here we add the empty set to the collections to simplify some of our arguments in the later
parts of the section.

From Lemma 2, we obtain the following result.

» Lemma 3. The families S% and Sy contain at most |P<j| + 1 = 2°0VR) sets each.
Moreover, for each i € [n], the families S’ and S% can be generated in 20VE) time.

We will now associate a set of integers to every pair (S,5") € 8% x S, for each i € [n].
Intuitively speaking, these sets will give the “allowed” number of crossings for a matching in
the graph G;. Consider i € [n], S € S, and S’ € §y. We let Alw;(S,5") ={l € [k]o | £ <

522

523

524

525

526

527

528

529

530

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

562

563

564

565

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

k — max{cst;(9), cst;(S")}}.
In what follows, we make a few observations regarding the sets we defined. These
observations will be useful in establishing the correctness of our algorithm.

» Observation 4. Consider i € [n] \ {1}. For S € S and Q C S\ {z:}, we have Q € St
Similarly, for 8" € St and Q' C '\ {y:}, we have Q' € Si.

Proof. We will only prove the first statement. (The second statement can be proved by
identical arguments.) Note that if Q =), then by definition, we have Q) € Sg(_l. Otherwise,
Q C X,_; and Q # 0. Let I = CstSet;(S). Note that [I| = [S| > 0. As S # () and S € S,
there is an integer o € [k] and P € P,, such that S = S%(P). Notice that I = P. Let
I’ = CstSet;(Q). Note that () € I’ C I. Thus, there is an integer 1 < o’ < «, and a partition
P’ € P,, such that I’ =P'. As a; = ;411 and x; ¢), we have 1 ¢ I’. That is, for each
B €I, wehave 2 < B < . Let I' = {f1,5a,...,0¢}, where £ = |I'|. Furthermore, let
I:: {B1—1,02 —1,...,8¢ — 1}. Note that forﬁgﬁ we have 1 < Eg o' —1 < k. Thus,

I € P From the above we have that Q = S% '(I) = S%(I’). Thus, we can conclude that
QeSS <«

» Observation 5. Consideri € [n]\{1}. For S € 8% and Q C S\ {z;}, we have cst;_1(Q) <
csti(S) —|S|. Similarly, for S’ € Sy and Q' C 8"\ {x;}, we have cst;_1(Q") < csty(S) — ||

Proof. We will prove the first statement. The proof of the second statement is symmetric.
Note that for each z € S, we have cst;(x) > 1. From Observation 4, we have @ €
Sg;l, and thus, Q C)?i,l. For a vertex z; €)?i,l N)A(i, csty(z;) = i+ 1 — j and
CSti_l(Ij) = ’L—j That is, CSti_l(Ij) = CSti(JIj) —1. Thus, CStZ‘_l(Q) = ZZ;‘EQ CSti_l(Zj) =
Yeqlesti(zy) — 1) = 3o, cocsti(z;) — |Q = X2, escsti(x)) — 2o, es\0 Csti(z;) — Q-
Hence, cst;—1(Q) < cst;(S) — |S]. <

» Observation 6. Consider i € [n] and Q C X;. If cst;(Q) < k, then Q € S .

Proof. If Q =), the by definition, we have Q € S%. Thus, we assume that Q # §. Recall
that cst;(Q) = >_,cocsti(z) < k and cst;(z;) =i+ 1 — j > 1. Note that cst;(z) # csti(z')
for distinct vertices x,2’ € Q. Hence, CstSet;(Q) is a distinct-part partition of an integer «,
where a € [k]. Therefore, by the definition of S, Q € S. <

Next, we prove a few observations regarding matchings in G;. To this end, we first define
the notion of a “compatible matching” Consider i € [n], S € S%, and S’ € Si. We say
that a matching M in G; is (i, S, S')-compatible if S = X, \ Sat(M), S’ = Y; \ Sat(M), and
cr(M) < k—max{cst;(S), cst;(S”)}. Compatible matchings will be helpful in establishing the
correctness of our algorithm, in which we will be considering matchings of G; that saturate
exactly (X; UY;)\ (SUS’), while incurring at most a certain allowed number of crossings.
Suppose at the ith stage of our algorithm, we consider a matching, say M;, of G; that does
not saturate S. We would like to extend M; to a matching of G with at most k crossings.
That is, at stage i, M; matches S to future vertices. Therefore, while extending M; to a
matching of the entire graph G, we will incur at least cst;(S) more crossings (in addition
to cr(M;)). Therefore, in order to be able to extend M; to matching of G with at most k
crossings, cr(M;) cannot exceed k — cst;(S). (Note that this is only a necessary condition
for extending M;.) Identical reasoning holds for the set S’. This is the intuition behind
compatible matchings.

» Observation 7. Consideri € [n]\ {1}, S € S%, and §' € Si. Let M be an (i,S,S")-
compatible matching in G;. Then, the following holds.

23:15

CVIT 2016

23:16

566

567

568

569

572

573

574

575

576

579

580

581

582

583

584

586

587

588

589

590

603

Connecting the Dots (with Minimum Crossings)

1. Ify;x; € M, where j < i, then z; € Xi_1.
2. Similarly, if x;y; € M, where j <1, then y; € Y;_1.

Proof. We only prove the first statement, as the proof of the second statement is sym-
metric. Note first that since M is an (i, S, S’)-compatible matching, we have cr(M) <
k — max{cst;(5), cst;(S”)}. In particular, cr(M) < k — cst;(.5).

Towards a contradiction, we assume that z; ¢ X1, e j<i—k—1 (recall that j <).
Now, consider the set X;_; U {z;}. Note that |)/(:,-_1 U{z;}| = k+ 1. Of the k + 1 vertices of
XU {z;}, all but |S| many are saturated by M, as S = X; \ Sat(M). That is, for each
vertex x, € ()?i,l U{z;})\ S, M matches z, to some y,, where s < 7. This means that M
contains (k + 1) — | S| edges of the form x,ys, where i — k < r < i and s < i. Each of these
(k+1) —|S| edges crosses the edge y;xz;. Thus, cr(M) > (k+ 1) —|S| > (k+ 1) — cst;(S)
(as cst;(S) = |S]), which contradicts the fact that cr(M) < k — cst;(.5). <

» Observation 8. Consider i € [n]\ {1}, S € S%, and S’ € Si. Let M be an (i, S,S’)-
compatible matching in G;. If x;y; € M, then x;y; crosses exactly | X 41, \ S| edges in M.
Similarly, if z;y;r € M, then x;y; crosses exactly Y41, \ S'| edges in M.

Proof. We will prove the fist statement. The proof of the second statement is symmetric.
Note that since M saturates all vertices of X; \ S, every vertex z, € X;11;\ S is matched
to some vertex ys € Y;—1. Each such edge x,ys € M crosses the edge x;y;. Also, note that
no other edge in M crosses x;y;. Thus, z;y; crosses exactly |X,;11,; \ S| edges in M. <

» Observation 9. Consider i € [n]\ {1}, S € S%, and S’ € Si. Let M be an (i, S,S’)-
compatible matching in G;. Then, the following holds.

1. If yjx; € M, where j < i, then (S\ {z;}) U {z,;} € S¥ .
2. Similarly, if z;y; € M, where j < i, then (S"\ {y;}) U{y;} € Séf_l.

Proof. Let Q; = (S\{z;})U{z,}. From Observation 7, we have z; € Xy, ie i—k<j<i.
Thus, Q; € Xi_1. Consider the case when Q;\{z;} = 0. Notice that cst;_1 ({z;}) =i—j < k.
Thus, from Observation 6, we can conclude that Q; = {z;} € Sfx_l. Now consider the case
when Q; \ {z;} # 0, and let Q" = Q; \ {z;}. We first show that cst;_1(Q;) < k. From
Observation 5, we have cst;_1(Q’) < cst;(S) — |S| < k —|S]. As M is (i, S, S")-compatible
we have cr(M) < k — cst;(S). Furthermore, as y;x; € M, where j < 4, from Observation 8,
we have | X;11,;\ S| < cr(M). Thus, we obtain that cst;(S) + | X411, \ S| < k. Note that
csti—1(Q;) = csti—1(Q') + csti—1(z;) < csti(S) — [S]+i — j = esti() + (| X1l — [S]) <
cst;(S) + | X415 \ S| As cst;(S) + | X414 \ S| < k, we obtain that cst;_1(Q;) < k. The
above statement together with Observation 6 implies that @Q; € Sf;l. <

Dynamic Programming Algorithm for CM-PM

We are now ready to define the states of our dynamic programming table. For each i € [n],
S € 8% and S’ € Sy with |S| = |9], and an integer £ € Alw;(S,5") = {¢ € [k]p | ¢ <
k — max{cst;(S), cst;(S')}}, we define

1, if there is a matching M in G, such that cr(M) = ¢ and
T[i, 5,5, ¢ = Sat(M) = (X; \ S)U(Y;\),

0, otherwise.

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Observe that (G, k) is a yes-instance of CM-PM if and only if there is £ € [k]o, such
that T'[n,0,0,¢] = 1. A matching M in G; is said to realize T[i, S,S’, ¥, if cx(M) = £ and
M is (i,5,5")-compatible. In the above we note that ¢ < k — max{cst;(5),cst;(S)}, as
¢ € Alw;(S,S"). Let us now see how TVi, S, S, ¢] can be computed.

Base Case: We are at our base case when ¢ = 1. Consider the entry T[1,5,5’,¢]. Note
that Gy has cr(Gy1) = 0. Thus, if £ > 0, we have T'[1,5,5’,¢] = 0. Now we consider the case
when ¢ = 0. Recall that by definition, we have |S| = |S'|. If S = {z1} and S’ = {y1}, then
we should not match any vertex. Thus, we have a matching (which is the empty set) with 0
crossings, and thus, T[1, S,5’,¢] = 1. Otherwise, we have S = S’ = (). Note that the only
possible matching in the graph G[{z1,v1}] is {z1y1}. So, if x1y1 € E(G), then {z1y1} is a
matching with 0 crossings, and hence T[1,S,5’,¢] = 0. Otherwise, we have z1y; ¢ E(G),
and hence T[1, 5,5, ¢] = 0.

We now move to our recursive formulae for the computation of the entries of our DP

table. We set the value of T'[i, S, S’, €] (recursively) based on the following cases, where 7 > 1.

Case 1: z; € S and y; € S'. From Observation 4, we have that S\ {z;} € Sk and

S\ {yi} € Si-'. Also, from Observation 5 it follows that £ € Alw;_1(S \ {z:},5" \ {y:}).

We set Ti, 5,5, 0] =T[i — 1,5\ {z:},5 \ {y:},£]. In the following lemma, we prove the
correctness of computation for Case 1.

» Lemma 10. The computation of T'[i, S,S’] at Case 1 is correct.

Proof. To establish the proof, we will show that T'[¢,S,5’,¢] =1 if and only if T[i — 1,5\
{z;},9" \ {vi},¢] = 1. For the proof of one direction, assume that T'[i, S, 5",] = 1. Let

M be a matching in G; that realizes T'[i, S, S’,f]. Note that Sat(M) = (X; \ S) U (¥; \ S).

As z; € S and y; € S', we have x;,y; ¢ Sat(M). Thus, M is also a matching in G;_;,
with Sat(M) = X;_1 \ (S\ {z;}) UY;_1 \ (8" \ {;}) and cr(M) = £. Thus, M realizes
Tli = 1,5\ {w:}, 5"\ {vi} . 4.

For the other direction, assume that T'[i — 1,5 \ {x;},S" \ {vi},4 = 1. Consider a
matching M in G;_; that realizes T[i — 1,5\ {x;}, 5"\ {v;}]. Note that M is a matching in
G; with Sat(M) = (X;\ S)U (Y;\ §') and cr(M) = £. Thus, M realizes T[i, S, S’, ¢], and
hence T7i, S, 5", ¢] = 1. <

Case 2: z; €S andy, ¢ S, orz; ¢ Sandy €5. Wewill only argue for the case when
x; € Sand y; ¢ S’. (The other case can be handled symmetrically.) Thus, hereafter we
assume that z; € S and y; ¢ S’. In this case, a matching, say M, which realizes Ti, S, S, ¢,
must saturate the vertex y; and must not saturate the vertex x;. Thus, M must have an edge
x;y;, where j < i (here we rely on the fact that y; cannot be matched to z;, as z; € S). As

M must satisfy the constraint cr(M) = ¢ < k, we must have i — k < j < i (see Lemma 18).

That is, the vertex tkohich y; is matched, must belong to the set)Afi,l. We will construct
aset Q C Sg(_l C 2%i-1. This set will be used for creating sub-instances whose values
are needed for the computation of T[i,S,S’,¢]. Intuitively speaking, each sets in Q will
determine a vertex to which y; is matched, in the matching that we are seeking for. Note
that as y; must be saturated by any matching that realizes (or complies) with T'[¢, .S, S’, ¢,
the edge, say Zy; in the matching might intersect other edges of the matching. Therefore, we
will have to account for this extra overhead in the number of crossing edges. To count these
extra crossings incurred, we will define an “overhead” function.

23:17

CVIT 2016

23:18

662

664

665

667

668

669

670

672

673

Connecting the Dots (with Minimum Crossings)

Figure 7 An illustration of the edges intersecting x;y;, where x; € Xio1 \ S. Here, the red edges
intersect x;y; and the green edges do not intersect x;y;.

To construct Q, we first construct two sets @, Q - 255"*1 (each of size at most O(k)).
We will obtain @ B é D Q (in that order, by removing some “bad sets”). For a vertex
zj € (N(y;)N)/(\'i_l) \S, let Qj = (S\{z;})U{x;}. Intuitively, the vertex y; will be matched
to x;, when QJ- is under consideration. Note that Q; C Xi1. Welet O = {Q; | z; €
(N ()N Xi_)\ S }. In the above definition, we only consider the neighbors of y; from

Xi—1\ S, because we require that the desired matchmg must not saturate a vertex from S.
We let Q=0n S’ ', We now define a function ovh : O—N (see Figure 7 for an intuitive
illustration). For Q); € Q, we set ovh(Q;) = | X;41,: \ S|- To obtain Q, we will delete those
sets from Q which will incur an “overhead” of crossings more than the “allowed” budget.
Before constructing Q, we first recall the following facts. By the definition of Q we have
Qe St Moreover, from Observation 4 it follows that S’ € Sl (asyi ¢ S). We set
Q={Q € Q| ¢—-ovh(Q) € Alw,;_1(Q, 5")}.

Now we set Ti, S, .5, £] as follows.

0, if 9 =10,
Voeo Tli —1,Q, 5", £ — ovh(Q)], otherwise.

In the following two lemmata (Lemma 11 and 12), we prove the correctness of our

T}, S, S' 0] = {

computation for Case 2.
» Lemma 11. IfT[i, S, S, ¢] = 1, then there is Q € Q, such that T[i—1,Q, S’,{—ovh(Q)] =

Proof. Assume that T[i,S,S’,¢] = 1. Let M be a matching in G; that realizes T[i, S, S’, ¢].
By definition, M is (i, S,S’)-compatible. Note that y; € Sat(M) and z; ¢ Sat(M). Let
x;y; € M. From Observation 7, we have z; €)A(i,l. Thus, we can conclude that i —k < j < 4.
Recall that Q; = (S \ {z;}) U {z;}. Now from Observation 9, it follows that Q; € S '. As
y; € S’, from Observation 4 it follows that S’ € 82;1.

Next, we will show that £ — ovh(Q;) € Alw;_1(Q;,8"). Let £ = ovh(Q;) = |X;11.\ S|.
From Observation 8 it follows that the edge ;y; intersects exactly | X1, \ S| many edges
from M. Thus, |X;41,\ S| <4, and 0 < { < 0 < k. Recall that Alw;_1(Q;,5") ={p € [klo |

<k — max{est;_1(Q;), cst;_1(S")}}. To show that £ — £ € Alw;_1(Q;,S"), it is enough to

674

675

676

677

678

679

680

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

702

703

705

706

707

708

709

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

show that ¢ — ¢ < k — max{cst;_ 1(Q;), csti—1(S")}. Note that £ < k — max{cst;(S), cst;(S)}
as £ € Alw; (S5, S"). Using Observation 5, we obtain that cst;_1(S") < cst;(S”). Thus, £ — (<
< k—cst;(S") < k—cst;—1(9’). Now we will argue that £ — £ < k —cst;_1(Q;). We start by
arguing that cst;_ 1(Q]) cst;(S) +0. As Qi \{z;} = S\{z:}, using Observation 5, we obtain
that cst;_1(Q; \ {z;}) < cst;(S) —|S]. Note that cst;_1(Q;) = cst;—1(Q; \ {z;}) + csti—1 ().
Recall that cst;_1(x;) = i—j. Thus, cst;_1(Q;) < cst;(S)—|S|+i—j < cst;i () —|SNXj 41,4+
i —j. Note that |X;41;[=i —j. Thus, est;_1(Q;) < csti(S) — [S N0 Xjpr4] + [Xjpr,i| =
cst;(S) + | Xj41,: \ S|- Hence, cst;—1(Q;) < csti(S) + ¢. We will use the above statement
to argue that £ — ¢ < k — cst;_ 1(Q;). As £ € Alw;(S,5"), we have £ + cst;(S) < k. Thus,
0+ cst;(S) =0 — 0+ csty(S) + 0= — [+ cst;_ 1(Q;) < k. Hence, ¢ — (< k- cst;—1(Q;).
From the above discussions, we can conclude that £ — ovh(Q;) € Alw;_1(Qj;,5").

We have obtained that T'[i — 1,Q;,S’, ¢ — ovh(Q;)] exists. Note that M’ is a matching
which realizes Tt — 1,Q;,S’, £ — ovh(Q;)]. This concludes the proof. <

» Lemma 12. Ifthere is Q € Q, such that T[i—1,Q, S’,{—ovh(Q)] = 1, then T, S, S, 4] = 1.

Proof. Assume that T — 1,Q;,5’,¢ — ovh(Q;)] = 1. Let M’ be a matching in G;_;
that realizes T'[i,S,5’,¢]. Note that z; ¢ Sat(M’). Let M = M’ U {z;y;}. Observe
that Sat(M) = (X; \ S) U (Y; \ §’). From Observation 8, the edge z;y; intersects exactly
| X41,:\ S| = ovh(Q;) edges from M’. This together with the fact that cr(M’) = ¢ —ovh(Q;),
implies that cr(M) = ¢. Thus, we can conclude that M realizes T'[¢, S, S’], and hence
T[i,S,8' =1 <

Case 3: z; ¢ S and y; ¢ S’. In this case, a matching, say M, which realizes T, S, 5’, (],
must saturate both the vertices x; and y;. Thus, M must have edges x;y; and z;y;/, where
j <iand j <i. (Assuming z; is adjacent to y; in G, it can be the case that j = 7/ =, in
which case z;y; € M.) We will thus have T[i, S, 5", 4] = T1[i, S, 5", £] V T»]i, S, S, €], where
T1[i, S, S, ¢] and Ts[i, S, S,] are boolean variables that correspond respectively to the cases
j=j =iand j+#i (and j' #i). We now define T1[i, S, S, ¢] and T[i, S, S, ¢], formally.

Defining T[i, S, 5, ¢]. Since z; ¢ S, we have S C X,_1. Since y; € S’, we have S' C Yii1.
By Observation 4, S € S;l and S’ € SZ;I. Note that if a matching M that realizes
Ti, S, S, £] contains the edge x;y; (assuming z;y; is indeed an edge in the graph G), then
cr(M) = cr(M \ {x;y;}). That is, no additional crossing is incurred by adding the edge z;y;
to the matching M \ {z;y;}. Also, note that ¢ € Alw;_1(S,S"). With these observations, we
define T1[i, S, 5, 4] as follows.

if x;y; ¢ E(G),
T, 8,0 =4 & T & BO)
Tli—1,8,5", 4], otherwise.

Defining T»[i, S, S, £]. Now, to define Ty[i, S, S’, (], we proceed as in Case 2. We will rely
on the fact that the matching we are seeking for does not contain the edge x;y;. Since we
need both z; and y; to be matched here, we will construct a set Q@ C S;l C 2Xi-1 and a
set R C Sy C PVi-i (each of size O(k)). We define Q (almost) the same way as we did in
Case 2. We also define R, the Y-counterpart of Q, analogously.

For a vertex z; € (N (yi) NXi_1)\ S, let Q; =SU{z;}. We let Q {Qj | zj € (N(y;)N
Xio 1)\5} and Q = QﬂSz ! - Similarly, for a vertex y;: (N(xl)ﬁYl)\S, let Ry =S"U
{y;;}. Welet R = {R;: |y € (N(z;)NY;_1)\ S}, and R = RNS% L. We will now construct
a set of “crucial pairs” from Q x R, for the computation of T5[i,S, S, ¢]. Towards this, we
define a function ovh : @ x R — N. We set ovh(Q;, Rj/) = [X 41, \ S| +|Yjr41,: \ 5’| — 1, for

23:19

CVIT 2016

23:20

710

711

715

716

7

718

719

720

721

722

723

738

739

740

741

742

743

Connecting the Dots (with Minimum Crossings)

Q; € Q and Rjs € R. Finally, we let €= {(Q,R) € QxR | £ —ovh(Q, R) € Alw,;_1(Q, R)}.
Now we set Ty[i, S, 5", £] as follows.

0, if =0,

TQ[i,S, S/,é] = .
V(Q,R)EC Tl —1,Q, R, ¢ — ovh(Q, R)], otherwise.

We set T = T1[i, S, 5", 4] V T»i, S, ',]. Using the following four lemmata (Lemma 13
to 16), we establish that the computation at Case 3 is correct. The proofs of Lemma 14
and 16 will use arguments similar to the ones used for the proof of Lemma 11 and 12,
respectively.

» Lemma 13. Let T[i,S5,5',¢] =1 and M be a matching realizing T[i, S, S, ¢], such that
xy; €M (ie., Th[i,S,S,0) =1). Then, T[i —1,5,5,¢ = 1.

Proof. Let M’ = M \ {z;y;}. Note that cr(M) = cr(M) = ¢, as the edge x;y; does not
intersect any edge in M. Moreover, SatM’ = (X;_1 \ S)U(Y;—1 \ S). Thus, we conclude that
T[i—1,8,8',0 =1. <

» Lemma 14. Let T[i,S,5',¢] = 1 and M be a matching realizing T[i, S,S’,{], such that
iy € M (ie., To[i,S,5',¢] = 1). Then, there is (Q,R) € €, such that T|i — 1,Q, R, { —
ovh(Q, R)] = 1.

Proof. Note that z;,y; € Sat(M), as z; ¢ S and y; ¢ S’. Let z;y;, x;y;; € M. By the
premise of the lemma, we have j # j’ # i. Note that the edges z;y; and z;y;/, intersect each
other. From Observation 7, we have z; €)A(i,l and y; € }A/i,l. Thus, we can conclude that
i—k <j,j <i. Recall that Q; = SU{z;} and Ry = 5" U {y;}. Now from Observation 9,
it follows that Q; € S% ' (as x; ¢ S) and Ry € Sy' (as y; ¢ S'). Since z; € N(y;) and
yj» € N(x;), we have Q; € Q and R;: € R.

Next, we will show that £ —ovh(Q;, R;/) € Alw;_1(Q;, R;/) (and thus, (Q;, R;/) € C). Let
(= ovh(Q;, Rj/) = | X41,: \S|+|Yjr41,:\S’| —1. From Observation 8 it follows that the edges
z;y; and z;y; intersects exactly | X;41,;\S| and |Yj/41,;\ S| many edges from M, respectively.
(Note that z;y; and z;y;s intersect each other.) Thus, | X1\ S|+ Y41, \ S| —1< ¢ In
the sum on the left hand side of this inequality, the term —1 ensures that the intersection
of the edges x;y; and x;y; is counted exactly once. Recall that (= | X541, \ S|+ [V, \
S| —1. Thus, 0 < £ — ¢ < £ < k. Recall that Alw, 1(Q;,R;/) = {p € [ko | p <
k — max{cst;_1(Q;),cst;—1(R;/)}}. To show that £ — (e Alw;_1(Qj, R;), it is enough to
show that £ —/ < k— max{cst;_1(Q;), csti—1(R;)}. Note that £ < k—max{cst;(S), cst;(S”)}
as £ € Alw;(S,5"). We will argue that £ — ¢ < k — cst;—1(Qj). (We can obtain that
-0 < k—cst;_1(R;), by following similar arguments.) We start by arguing that cst;_1(Q;) <
cst;(S) + | X 41, \ S|- As Q; \ {z;} = S, using Observation 5, we obtain that cst;_1(Q; \
{.’L'j}) < CStZ’(S) — |S| Note that CStl;l(Qj) = CStl;l(Qj \ {.Z'J}) + CStz‘,l(.Z'j). Recall that
CStifl(SUj) =i—j. Thus, CStifl(Qj) < CSti(S) — ‘S‘ +i—7 < CSti(S) — |SﬂXj+177;| +i—7j. Note
that |Xj+1,i| = ’L—] Thus, CSti_l(Qj) < CSti(S)—‘SﬂXj+17i|+|Xj+1yi| = CSti(S)+|Xj+1’7;\S|.
Hence, cst;—1(Q;) < cst;(S) + | X 41,5 \ S|. We will use the above statement to argue that
L —gg kE —cst;_1(Qj). As € € Alw,(S,S’), we have £+ cst;(S) < k. Thus, £ + cst;(S) =
£—= 04 (esti(9) + X1 \ S + (1Yjr 41, \ 5[= 1) < k. As csti1(Q;) < esti(S) +[X;41,i \ S,
we have £ — € + cst;_1(Q;) + (|Yjr1,: \ S'| — 1) < k. Note that Y41, \ S # 0, as y; ¢ 5,
and therefore, |Yj/11;\ S| —1 > 0. From the above discussions, we can obtain that
(—0<k— cst;—1(Q;). Thus, we can conclude that £ — ovh(Q;, R;/) € Alw;_1(Q;, R;/), and
hence (Q;, R;/) € €.

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

772

773

774

775

776

7

778

779

780

781

782

783

784

785

786

787

788

789

790

792

793

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

We have obtained that T[i—1, Q;, R/, £—ovh(Q;, Rj/)] exists. Note that M’ is a matching
which realizes T[i — 1,Q;, Rj, £ — ovh(Q;, R;/)]. This concludes the proof. <

» Lemma 15. If T[i—1,5,5",¢] =1, then T[i, S, 5", £] =1 (in particular, Ty[i, S, S’, €] = 1).

Proof. Consider a matching M’ realizing T'[i — 1,5,5",¢] = 1, and let M = M’ U {z;y;}.

Note that cr(M) = cr(M) = £, as the edge z;y; does not intersect any edge in M’. Moreover,
SatM = (X;\S)U(Y;\S), asx; ¢ Sandy; ¢ S’. Thus, we conclude that T'[i, S, 5", (] =1. =

» Lemma 16. If there is (Q,R) € C, such that T[i — 1,Q,R,{ — ovh(Q, R)] = 1, then
T[i,S,8", ¢ =1 (in particular, T5[i,S, 5", () = 1).

Proof. Assume that T[i — 1,Q;, Ry, £ — ovh(Q;, R;/)] = 1, and let M’ be a matching in
G,_1 realizing it. Note that z;,y; ¢ Sat(M’). Let M = M’ U {z;y;,z;y; }. Observe that
Sat(M) = (X; \ S) U (Y; \ S). From Observation 8, the edges z;y; and z;y; intersect
exactly | Xj41,; \ S| and |Yj41, \ S’| many edges in M, respectively. Moreover, z;y; and
x;y; intersect each other. Recall that ovh(Q;, Rj/) = [Xj41,: \ S| + |Yjr41,: \ S’| — 1. From
the above discussions and the fact that cr(M’) = £ — ovh(Q;, Rj/), we can conclude that
cr(M) = {. Thus, M realizes T'[i, S, S'], and hence T, S, 5] = 1. <

As observed earlier, (G, k) is a yes-instance of CM-PM if and only if there is ¢ € [k]o,
such that T[n, 0,0, (] = 1. Note that for each i € [n], S € S%, S’ € S&, and £ € Alw,(S, 5"),
we can compute the entry T'[i, S, 5’ £] in time bounded by n®®) . Moreover, the number of
entries in our table is bounded by 20(Vk),,0(1) (see Lemma 3). Thus, the running time of
the algorithm is bounded by 20(VK),0() | The correctness of the algorithm follows from the
correctness of base case and recursive formulae (Lemma 10 to 16). The above discussions
lead us to the following theorem.

» Theorem 17. CROSSING-MINIMIZING PERFECT MATCHING admits an algorithm running
in time 20<‘/E)n0(1), where n is the number of vertices in the input graph.

3.3 Polynomial kernel for CM-PM

In this section, we design a kernel with O(k?) vertices for CM-PM. Let (G, k) be an instance
of CM-PM. To obtain our kernel we first bound the number of pairs (z;,y;) (called a bad
pair), where x;y; is not an edge, by O(k). This bound is obtained by arguing that bad pairs
contribute to edge crossings. Next, we argue that not all the vertices between two consecutive
bad pairs is necessary, for preserving the answer. In fact, we argue that keeping O(k) vertices
between each consecutive bad pairs is enough. This strategy leads us to a kernel with O(k?)
vertices.

Before moving to the formal description of our algorithm, we start by introducing some
notations which will be useful later. Let (G, k) be an instance of CM-PM. For each i € [n], if
x;y; € E(G), then we call the pair (x;,y;) a good pair, otherwise we call (z;,y;) a bad pair. A
perfect matching M of G is said to be an optimal perfect matching of G if cxr(M) < cx(M')
for every perfect matching M’ of G. If i = j, then we call z;y; a vertical edge, if i < j, then
we call z;y; a left-leaning edge, and if ¢ > j then we call z;y; a right-leaning edge.

We first prove two lemmata that will be crucial for the correctness of our kernelization
algorithm. The first lemma shows that every left- or right-leaning edge in a perfect matching
of GG participates in at least one crossing. Moreover, the second lemma provides a lower
bound on the number of crossings in a perfect matching of G.

23:21

CVIT 2016

23:22

794

795

796

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

819

820

821

822

823

824

Connecting the Dots (with Minimum Crossings)

» Lemma 18. Let (G, k) be an instance of CM-PM. Let M C E(G) be a perfect matching
of G such that x;y; € M. Then cr(M) > |j —i|. In particular, if z;y; is a left-leaning
edge, then it intersects at least j — i edges x,ys € M with r > i and s < j; and if z;y; s a
right-leaning edge, then it intersects at least i — j edges x,ys € M with r <1 and s > j.

Proof. If i = j, then there is nothing to prove. Assume ¢ < j. Consider the j — 1 vertices
Y1,Y2,---,Yj—1. In M, at most ¢ — 1 of them are matched to {z, | r < i}. Therefore, at least
(j—1)—(i—1)=j—i of them are matched to {x, | r > i}. That is, M contains at least
j — % edges x,y,, where r > i and s < j. Moreover, each of these edges crosses x;1;. The
case when 7 > j is symmetric. <

> Lemma 19. Let (G, k) be an instance of CM-PM and M C E(G) a perfect matching of
G. Let My, C M be the set of left-leaning edges in M and Mr C M the set of right-leaning
edges in M. Then,

cr(M) > max Z (j—1), Z (i —J)

xiy; €M z;y; EMR

Proof. As shown in the proof of Lemma 18, each edge x;y; € M|, intersects at least (j —)
edges z,.ys with r > i and s < j. Moreover, because r > i and s < j, these (j —i) crossings are
counted exactly once. Summing over all edges z;y; € M, we get cr(M) > ZmiyjeML (j —1).
Using symmetric arguments, we can also show that cr(M) > ZziyjeMR(i — 7). <

We are now ready to present our kernelization algorithm. In the following we prove a
lemma which bounds the number of bad pairs in the input instance.

» Lemma 20. Let (G, k) be an instance of CM-PM. If G contains at least 2k + 1 bad pairs,
then (G, k) is a no-instance.

Proof. Assume that G contains at least 2k + 1 bad pairs. Let M be an optimal perfect
matching of G. We shall show that cr(M) > k. Note that corresponding to every bad pair
(xi,v:), M contains a left- or right-leaning edge x;y;. Moreover, since G contains at least
2k + 1 bad pairs, at least 2k + 1 edges in M are left- or right-leaning. Then, by the pigeonhole
principle, either at least k 4 1 of these edges are left-leaning or at least k + 1 are right-leaning.
Assume without loss of generality that at least k 4 1 are left-leaning, and let My C M be
the set of these left-leaning edges. Thus |My| > k + 1 and note that for each z;y; € My,
(j —1) > 1. By Lemma 19, cr(M) > ZwiyjeML (j—i) =2 k+1 <

The above lemma leads us to the following reduction rule.
Rule 1: G contains at least 2k + 1 bad pairs.
Do: Return that (G, k) is a no-instance.

When Rule 1 is not applicable, the number of bad pairs in G is bounded by 2k. We now
need to bound the number of good pairs. Towards that end, we introduce the following
reduction rules.

Rule 2: Let (z;,y;) and (z;,y;) be two consecutive bad pairs (i.e., (z,,y,) is a good
pair for every r, where i < r < j) such that j — 4 > 4k + 2.

Do: Delete vertices x, and y, for every r =7+ 2k+2,0+2k+3,...,5 — 2k — 2.
Parameter: No change.

826

827

828

829

830

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

862

863

864

865

866

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Rule 3: Let (x;,y;) be the first bad pair (i.e., (z,,y) is a good pair for every r < i) and
(x5, y;) the last bad pair (i.e., (z,,y,) is a good pair for every r > j) in G.

Do: If i > 2k+1, then delete vertices x, and y, for every r < i—2k—1. If n—j > 2k+1,
then delete vertices x, and vy, for every r > j + 2k + 1.

Parameter: No change.

» Lemma 21. Rules 2 and 3 are safe.

Proof. We show safeness of Rule 2 only. The proof for Rule 3 is similar. Let (G', k') be an
instance obtained from (G, k) by a single application of Rule 2 with the pair of consecutive
bad pairs (z;,v;) and (z;,y;). Note that k¥’ = k. We show that (G, k) is a yes-instance if
and only if (G', k') is a yes-instance.

Assume that (G, k) is a yes-instance and let M C F(G) be an optimal perfect matching
of G. Then, cr(M) < k. Consider the 2k + 1 edges in M that saturate (incident to) the
vertices Ti41, Tit2, ..., Titakt1. Since cr(M) < k, at most 2k of these edges can participate
in a crossing. Equivalently, at least one of these edges does not participate in any crossing.
But every left- or right-leaning edge in M participates in at least one crossing. Therefore,
at least one of the vertices x;41,%;t2,...,Titor4+1 is saturated by a vertical edge in M. Let
xy, for some i € {i +1,i+2,...,i+ 2k + 1} be that vertex. That is, z;y; € M and z;y;
does not participate in any crossing in M.

Similarly, among the 2k 4+ 1 edges in M that saturate the vertices z;_1,%;_2,...%j_2k—1,
at least one is a vertical edge that does not participate in any crossing. Let x;/y; be that
edge for some j' € {j — 1,5 —2,...,j7 — 2k — 1}. Also, note that since j —i > 4k + 2, we
have i +2k+1 < j —2k — 1.

For 7 such that ¢/ < r < j’, consider the edge x,ys € M that saturates x,.. Since the two
edges x;yy and xjy; do not participate in any crossing, in particular, they do not cross the
edge z,ys. Therefore, i’ < s < j'. Let M C M be the set of edges in M that saturate the
vertices Ty 41, Tir42, ..., &7—1. Then, M* = (M \]T/f) U{z,yr | ¥ <r < j'} is also a perfect
matching in G with cr(M*) < cr(M) < k. Now note that the graph G’ is obtained from G
by deleting the vertices z, and y, for every r = i+2k+2,i+2k+3,...,j—2k—2. Also, note
that i’ <i+2k+2and j—2k—2 < j'. Therefore, M*\{z,y, | i +2k+2<r<j—2k—2}
is a perfect matching of G’ with at most k crossings.

To see the reverse direction, assume that (G, k) is a yes-instance and let M’ be an optimal
matching of G’. Then, cr(M’) < k. By repeating the arguments used in the forward direction,
we can show that M’ contains vertical edges z;y; and x;y; that do not participate in any
crossing, for some i’ € {i+1,i4+2,...,i+2k+1}and 7 € {j —1,j—2,...,5 —2k—1}.
For r such that i/ < r < 5/, consider the edge z,ys € M’ that saturates x,. Since the
two edges x;yy and x;:y; do not participate in any crossing, in particular, they do not
cross the edge x,ys. Therefore, i/ < s < j'. Let M C M’ be the set of edges in M’ that
saturate the vertices z; 41,2y 42,...,2;,—1. Then, M" = (M'\ MU {zpy, | i <r<j'}
is also a perfect matching with cr(M”) < cr(M’) < k. Then, note that M"" = M" U
{zryr | i+ 2k+2 < r < j— 2k — 2} is a perfect matching of G and cr(M"") = cr(M") <
k. <

» Lemma 22. Given an instance (G,k) of CM-PM, let (G', k) be the instance obtained
from (G, k) by an exhaustive application of Rules 1 to 8. Then, |V(G')| < (B(G) — 1)(4k +
2) + B(G) + 4k + 2, where B(G) is the number of bad pairs in G.

Proof. If Rule 1 is applicable, we correctly report the answer. So we assume that Rule 1 is
not applicable. After an exhaustive application of Rules 2 and 3, between two consecutive

23:23

CVIT 2016

23:24

867

868

869

879

880

881

883

884

885

886

888

889

890

892

893

894

895

899

900

Connecting the Dots (with Minimum Crossings)

bad pairs in G’, there are at most 4k + 2 good pairs, and there are most 2k + 1 good pairs
between (21,y1) (including (z1,y1)) and the first bad pair, and between the last bad pair
and (z,,yn) (including (x,,y,)). Moreover, the number of bad pairs in G’ is the same as
the number of bad pairs in G. <

» Theorem 23. CROSSING-MINIMIZING PERFECT MATCHING, parameterized by the number
of crossings k, has a kernel of with O(k?) vertices.

Proof. Given (G, k), if G contains at least 2k + 1 bad pairs, then by Lemma 20, (G, k) is a no-
insatnce. Otherwise, 3(G) < 2k. When none of Rules 1 to 3 apply, we have |V (G)| € O(k?)
(see Lemma 22). <

4 NP-hardness, FPT Algorithm and Polynomial Kernel for
CROSSING-MINIMIZING HAMILTONIAN PATH

In this section, we show that CM-HAM PATH is NPH, but can be solved in time 20(Vklog k), O(1)
and admits a kernel with O(k?) vertices. The problem CROSSING-MINIMIZING HAMILTONIAN
PatH (CM-HAM PATH) is formally defined below.

CROSSING-MINIMIZING HAMILTONIAN PATH (CM-HAM PATH) Parameter: k
Input: A two-layered graph G and a non-negative integer k.
Question: Does G have a Hamiltonian path with at most k crossings?

4.1 NP-hardness of CROSSING-MINIMIZING HAMILTONIAN PATH

The NP-hardness of CROSSING-MINIMIZING HAMILTONIAN PATH follows from NP-hardness
of testing if the given bipartite graph admits a Hamiltonian path. In this section, we show
that even if the given instance (G, k) of CM-HAM PATH, G admits a Hamiltonian path,
testing if there is a Hamiltonian path in the two-layered graph G with at most k crossing is
NP-hard. We call this problems RESTRICTED CM-HAM PATH, which is formally defined
below.

RESTRICTED CM-HAM PATH

Input: A two-layered graph G, which admits a Hamiltonian path, vertex bipartition X,
Y of V(G), and an integer k.

Question: Does G have a Hamiltonian path with at most k crossings?

To establish the NP-hardness result for RESTRICTED CM-HAM PATH, we give an
appropriate reduction from the BIPARTITE-HAM PATH, which is defined below.

BIPARTITE-HAM PATH

Input: A bipartite graph G (with maximum degree three) with vertex bipartition X,Y,
and a vertex z* € X.

Question: Does G admit a Hamiltonian path with z* as one of the end vertices?

The NP-hardness of BIPARTITE-HAM PATH follows from the NP-hardness of HAMILTONIAN
PATH on bipartite graphs of maximum degree three [45, 46], where the goal to test if the
given bipartite graph admits a Hamiltonian path.

Reduction. Let (G, X,Y,z*) be an instance of BIPARTITE-HAM PATH. We construct a
two-layered graph H with vertex bipartition P, @, and an integer k such that (H, P,Q, k)
is a yes instance of RESTRICTED CM-HAM PATH if and only if (G, X,Y,z*) is a yes in-
stance of BIPARTITE-HAM PATH. We let vertices in X to be 21 = z*,29,...,2,, and

901

902

903

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

932

933

934

935

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Figure 8 Partial construction of an instance of CM-HAM PATH.

ox = (x1,%2,...,2Z,). Similarly, we let vertices in Y to be y1,y2,...,yn, and oy =
(y1,Y2y---,Yn). Initially, P = X, Q =Y, and E(H) = E(G). Next, we create sets of
(new) vertices, P. = {c1,¢2,...,¢n1,¢n}, Qc = {c},¢h, ..., ch_1¢h}y Ps = {s1,82,...,8t},

and Qs = {s,s5,...,s;}. Here, t = (2”2_1) + 2. We add all the vertices in P.U P, to P,
and add all the vertices in Q. U Qs to (). The vertices in P. U Q. induces a path in H,
namely, Py = ¢1¢)jcach ... cno1¢)_1ncl, i.e. we add all the edges in {c;c} | i € [¢]} U{cicit1 |
i € [t — 1]} to E(H). Similarly, the vertices in Ps U @, induces a path in H, namely,
Py = s18) 8985 ... 81_18,_15:8}, i.e. we add all the edges in {s;s} | i € [t]}U{s;si+1 | ¢ € [t—1]}
to E(H). We add the edge c},s1 to E(H), and therefore, P; @ P5 induces a path in H. Next,
we add all the edges in {yic;,c;yit1 | ¢ € [n — 1]} to E(H). The intuition behind adding
these edges is to connect vertices y; and y;11 via the vertex ¢;, where ¢ € [n — 1]. Similarly,
we add all the edges in {x;c}, cixiy1 | i € [n— 1]} to E(H). We add the edge sjz1 = z*
to E(H). We also add the edge x,c}, and y, ¢, to E(H), which will be helpful in creating
a Hamiltonian path in H. We let op = ¢pc1¢a...¢p—1 0 8182...8 0 ox. Similarly, we let
0 = cicy...cl, 08 sy .8, 00y. Next, we place vertices in P and @ in two (distinct)
parallel lines Lp and L, respectively. The order in which the points in P appear in Lp
is given by op. Similarly, the order in which the points in) appear in L is given by og.
This completes the description of the two-layered graph H with vertex bipartition P and Q.
Finally, we set k = (2”; 1).

In what follows, we prove some lemmata that will be helpful in establishing the equivalence
of the instances (G, X,Y,z*) of BIPARTITE-HAM PATH and (H, P,Q, k) of RESTRICTED

CM-HaM PATH.

» Observation 24. The bipartite graph H admits a Hamiltonian path.

Proof. Let P; = s1818085...8:8;, Px = x1cjxachaes...xp_1c,_1xnch,, and Py = cpy,
Cn—1Yn—1Cn—2Yn—2 - .. y2c1y1 be paths in H. By construction the path Ps; e (Px e Py) is a
Hamiltonian path in H. |

» Lemma 25. Let (H,P,Q,k) be a yes instance of RESTRICTED CM-HAM PATH, and S
be a Hamiltonian path in H with at most k crossings. Then, E(S) N ({yicj, xic} | i,j €
[n]} NE(H)) = 0.

Proof. Assuming a contradiction, suppose S contains an edge say, e € {yic;j,xic; | 4,j €
[n]} N E(H). Note that in H, e crosses each edge in {s;s} | i € [t]} U {sisi+1) | i € [t — 1]},

where t = (2"_1) + 2. Moreover, for each ¢ € [t — 1], N(s}) = {si,si4+1}. Since S is a

2

Hamiltonian path, it follows that [E(S) N {s;s}, sisis1 | € [t— 1]} =t —1= (>3 + 1.

17 %
Moreover, e crosses each edge in E(S) N {s;s}, s;, si+1 | ¢ € [t — 1]}. This contradicts the fact
2”_1) crossings. <

that S is a Hamiltonian path in S with at most k = (5

23:25

CVIT 2016

23:26

936

937

938

939

941

942

943

944

945

946

947

967

968

969

970

971

972

973

976

977

978

980

981

Connecting the Dots (with Minimum Crossings)

» Lemma 26. (G, X,Y,z*) is a yes instance of BIPARTITE-HAM PATH if and only if
(H,P,Q,k) is a yes instance of RESTRICTED CM-HAM PATH.

Proof. In the forward direction let S be a Hamiltonian path in G with x* as the first vertex.
Recall that Py = ¢1c)cachy ... cn_1¢),_1CnC,, and Py = $1815285 ... 5:-18,_15: S} are paths in
H, respectively. Furthermore, by construction we have that Z = (P; e P;) ¢ S is Hamiltonian
path in H. Since S is a path in H with 2n — 1 edges, it has at most k = (2”;1) pairwise
crossing edges. Moreover, no edges in F(Z) \ E(S) crosses an edge in F(Z). Therefore, Z is
a Hamiltonian path in A with at most k crossings.

In the reverse direction, let Z be a Hamiltonian path in H with at most k crossings.
Let E' = {yicj,zic} | i,j € [n]} N E(H). From Lemma 25 it follows that F(Z) N E" = 0.
Therefore, Z is a Hamiltonian path in the graph H' = H — E’. Observe that for each
u e (XUY)\{z1}, we have Ny (u) C X UY. Moreover, Ny (z1) CY U {s}}. This implies
that Z[(X UY)\ {z1}] is an induced path. Note that in H' — {z}, there is not path from a
vertex in {¢;, ¢, | i € [n]} U {s;,s] | i € [t]} to a vertex in {x;,y; | ¢ € [n]}. Thus Z[X UY]
must be an induced path in H’, and hence in G. This concludes the proof. <

Recall that in the construction of our reduction, for a graph G on n vertices with
maximum degree 3 (which is an instance of BIPARTITE-HAM PATH), we create an instance
(H,k) of CM-HaM PATH, such that k € O(n?) and |V (H) + E(H)| € O(n). We note that
BrpARTITE-HAM PATH does not admit an algorithm running in time 2°(nM (assuming
ETH). Thus, we obtain that CM-HAM PATH does not admit an algorithm running in time
20(Vk) pO(1) (assuming ETH). Also, we can obtain that, unless ETH fails, CM-HAM PATH
does not admit an algorithm running in time 20"t M) where n and m are the number
of vertices and edges in the input graph, respectively.

4.2 Algorithm for CROSSING-MINIMIZING HAMILTONIAN PATH

Let (G, k) be an instance of CM-HAM PATH, with vertex bipartition X and Y. Note that
if | X| > |Y|+2or|Y| > |X]|+2, then (G,k) is a no-instance, as it does not admit a
Hamiltonian path (here we rely on the fact that G is a bipartite graph). Thus, without
loss of generality, we assume that |X| = n, and |Y| € {n — 1,n}. We will design an FPT
algorithm for CM-HAM PATH running in time 20(Vklogh) , O(1) - Oy algorithm will be a
dynamic programming algorithm which processes the graph from left to right. That is to
say, for each i = 1,2,...,n, at stage 7, we consider the graph G; = G[X; UY;], the graph
induced by {z1,...,z;,y1,...,9:}, and solve a family of subproblems, the solution to one of
which will lead to an optimal solution of the entire graph G. We will bound the number of
sub-instances that we need to solve at each stage ¢, for ¢ € [n], by 20(Vklogk),

We will first explain the intuition behind our algorithm. Suppose (G, k) is a yes-instance
CM-HAM PATH and let H be a Hamiltonian path in G from u* to v* with cr(H) < k.
Note that in H, each vertex u € V(G) \ {u*, v*} has degree exactly 2, while u* and v* are
vertices of degree exactly one. Fix i € [n], and consider how H saturates the “future vertices,”
i.e., vertices in X;y1, UYj41,,. Consider a future vertex, say x; for some j > i. Using the
fact that cr(H) < k, we will show that H cannot have a neighbor of x; from the set Y;_.
Therefore, the only vertices in X; UY; that can possibly be neighbors to vertices in the future
belong to the set X;_j; UY;_; ;. Now let us further refine our observation. Let S C X;
and S’ C Y] be the set of vertices which have at least one neighbor in H from X, , and
Yit1,n, respectively. (We will argue that indeed, S C X,_j,; and S’ C Y;_j,.) Consider
zpyy € E(H) and ygzy € E(H), where p,q < i and p’, ¢’ > i+ 1. Note that the edges z,y,
and y,xy intersect each other. Thus, we can deduce that cr(H) > (|S|—1)-(|S’| —1). From

1014

1015

1016

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

ph () — epre(vs) egrrizs) @ 5oom L s
— eprp(y = eprg = eprp(L4 5 6 U7 Ln
8 FYa OP y3 g rlT3 o ° ° : o ---®
T
¢ ° o (¢} e . O I ®e---@
Y1 Y2 _ UZ _Ya Ys=v _ Ye | Y7 Yn
= eprp(23) = eprp(z1) = eprp(ye),

Figure 9 An illustration of a fragmented path set F' in the graph Gs. The colored (other than
black) vertices are the vertices from the set ImpEpt(F'), and the vertices from ImpEpt(F') colored the
same correspond to the “pairings” given by the function epr.

the above discussions we can conclude that at most one of S, S’ can be of size at least vk + 2
(otherwise, we will have cr(H) > k). Indeed we will argue that the sizes of both S and S’,
can be bounded by O(vk), each. Thus, we can “guess” the sets S and S, for each i € [n],
in time bounded by 20(Vklogk) We note that the above step can also achieved by using the
notion of “distinct-part” partitions, that we used in our FPT algorithm for CM-PM. But for
the case of CM-HAM PATH, this does not offer any significant improvement in the running
time (the reason will be clear, when we explain from the dominant factor in the running time
of our algorithm).

As was defined earlier, the subsets S and S’ of X; and Y}, respectively, are vertices with
at least one neighbor in the future. Note that some vertices from S U S’ have exactly one
neighbor from the future, while others have two neighbors from the future. To define the
states of our algorithm, we need to exactly know, which vertices from S U S’ have exactly
one neighbor and which among them have exactly two neighbors, from the future. Thus, in
our algorithm we will have pairs of subsets of X; and Y;, which will be determine the vertices
we just described.

Note that H, when restricted to the graph G;, is a collection of disconnected paths. In
order to complete these disconnected paths to a Hamiltonian path of the whole graph, we
need to remember how the endpoints of the currently “incomplete” H looks like in, the
current graph, G;. Remembering these endpoints seems to be crucial, in order to obtain a
Hamiltonian path and to avoid creating cycles. As only O(k) vertices have neighbors from
the “future”, there are at most O(k) paths (which are sub-paths of H), whose endpoints
need to be remembered, in the current graph G;. To remember these “endpoints”, we need
to spend at least 20(VF1log k) ime, (This is the dominant factor in the running time of our
algorithm.)

We start by giving some notations and preliminary results that will be helpful in designing
our algorithm.

Notations and Preliminary Results

We will assume that 2 < |Y| < | X]|, as otherwise, the problem is polynomial time solvable.

Also, we assume that either |X| = |Y| =n, or |X| = n and |Y| = n — 1. We note that if
|Y| =n—1, then Y;,, = Y,,_;. Furthermore, for j € [n — 1], Y;,, = Yj,_1. Throughout the
section, we will only be seeking for a Hamiltonian path from u* to v* in G, with at most k
crossings.

23:27

CVIT 2016

23:28

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1045

1046
1047
1048
1049
1050
1051

1052

1053

1054

1055

1056

1057

1058
1059

1060

Connecting the Dots (with Minimum Crossings)

A (u*,v*)-fragmented path set (or simply, a fragmented path set) in G, is a subgraph
of G;, with V(F) = V(G;) and E(F) C E(G;), such that each connected component of
F is a path, u* and v* are of degree at most one in F, and uw*v* ¢ E(F). Note that
in a fragmented path set, the degree of a vertex belongs to the set {0,1,2}. Consider a
fragmented path set F in G;, for i € [n]. For r € {0,1,2}, by Sat’.(F), we denote the
set of vertices of degree exactly r in F, i.e., {v € V(G;) | dr(v) = r}. For a connected
component P of F', by ept;(P) and ept,(P), we denote the two end vertices of P (possibly
ept; (P) = epty(P)). We will define a set of “important” endpoints of F. In our algorithm
components which are of size at least 2 and components containing ©* or v* will be particularly
important. This leads us to the following definition. Let ImpEpt(F) = {ept,(P), epty(P) |
P is a connected component of F' with at least 2 vertices or P contains u* or v*} (see Fig-
ure 9). We define a function which pairs up the endpoints of paths in the components
of F. We let eprp : ImpEpt(F) — ImpEpt(F), such that eprp(ept,(P)) = epty(P) and
eprp(epty(P)) = epty (P).

Some important sets for the algorithm. Recall our assumption |X| =n and |Y| € {n —
1,n}. Fori € [n], we let X; = {2;_jie | L€ [Kloand i —k+£>1} and Y; = {yipqe | £ €
[k]o and i — k4 ¢ > 1}. We note that in the above definition, we have ¢ € [k]y (in contrast to
¢ € [k] in a similar definition from Section 3.2). This is used to cater for the condition that
sizes of X and Y need not be the same (they can differ by at most one). Roughly speaking,
we will argue that in any Hamiltonian path, say H in G, with cr(H) < k, the vertices from
X; (resp. Y;) which are a neighbor to a vertex ys (resp. xs) in H, where s > i + 1, belong to
the set)/(:Z (resp.)7;)

We will now associate costs to vertices (and subsets) of X; (resp. ﬁ), which will be
helpful in obtaining lower bounds on the number of crossings, the when vertices from X;
(resp. ﬁ) are adjacent to vertices ys (resp.), where s > i+ 1. To this end, consider i € [n]
and a vertex x, € sz We let cst;(z,) =i+ 1—r. Since z, € X27 we have r < i, and thus,
csti(x,) = 1. For a subset Q C X;, we let cst; (Q) = > cqcsti(z). Similarly, for i € [n]
and a vertex y, € Y;, we let cst;(y.) =i+ 1 —r = 1. Moreover, for a subset @ C Y;7 we let
cst;(Q) = -, cq csti(y). We note that, for each i € [n], we have cst;(0)) = 0.

Now we will introduce some “special” sets of pairs of subsets of)A(z and)/;i, respectively,
for each ¢ € [n]. These sets will be crucially used while creating the sub-instances in
our dynamic programming based algorithm. For i € [n], let St = {(S1,82) | §1 C
Xi, 8 C Xi \ {u*, v}, S1N Sy =0, and [S1] + [S2] < 2v/k}. Similarly, for i € [n], let

L= {(5],85) | S} C Y, S, C Y\ {ur, v}, 8, NS, =0, and |S;| + |84 < 2vk}. In the
following observatlon, we state a result regarding the bounds on the size and the time required
for the computation of S% and S, which easily follows from their definitions.

» Observation 27. For each i € [n], the sizes and the times required for the computation of
S% and Sy are bounded by 20(Vklogh)

Proof. The proof follows from the fact that \)?Z|, |37;\ <k+1 <

In the following we state an observation regarding the sets Sé(and Sé/, which will be
useful later.

> Observation 28. Consider i € [n]. Let Q C X, such that csti(Q) < 2k. Then, for any
Q1 CQ, Q2 C O\ ({u*,v*}UQ1), we have (Q1,Q2) € S'. Similarly, let Q' CY;, such that
csti(Q') < k. Then, for any Q1 € Q', Q5 € Q"\ ({u*,v*} U QY), we have (Q},Q%) € Sy-.

1072

1073

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

X; X
| [e olilah "
,1{ 1{ It [It ,\| ‘0)e [[

7 \
! Il ® ® ®
\9,

,_______________.

Figure 10 An illustration of the connected components of the fragmented path set F' of H. The
blue and red vertices are the vertices from sets S; U S] and Se U S5, respectively.

Proof. We only prove the first statement. The proof of the second statement can be obtained
by following similar arguments. Note that it is enough to show that |Q| < 2v/k. If Q = (), then
the claim trivially follows. Thus, we assume that @ # (). Let P = {cst;(z) | z € Q}. Note that

P is a partition of an integer o < 2k. Also, distinct =,z € Q, we have cst;(x;) # cst;(x;/).

Hence, P is a distinct-part partition of o < 2k. We will show that |P| < 2k, which is
enough to establish the claim. Towards a contradiction, assume that [P| > 2v/k + 1. Let
P={p1,B2,-+,Be}, where 1 < 81 < B <, -+, < Br—1 < B¢ < 2k (recall that P is a distinct
part partition, so no two elements in it are the same). Thus, we can obtain that 3, > r, for
each 7 € [¢]. The above statement together with our assumption that ¢ > 2v/k + 1, implies

that 35, i Br 2 Xpeq ™ = 2VE+1)(2VE+2)/2. Hence, 3, iy Br > (4k+6vVk+2)/2 > 2k.

This contradicts that P is a distinct-part partition of «, where a < 2k. <

For each i € [n], 8 € S%, and 8’ € S%, we will define a set of pairing function F;(8,8’).

Roughly speaking, F;(8,8") will give us a set of potential endpoints belonging to X; UY;, of
the connected components of the fragmented path set F' of H, when restricted to vertices in

X; UY; (see Figure 10 for an intuitive illustration of such components and their endpoints).

Consider i € [n], 8§ = (S1,5:) € Sk and 8’ = (S},55) € S. We let F;(8,8') be the set
injective functions epr : S;USTU(V(G;) N{u*,v*}) — S1USTU(V(G;)Nn{u*,v*}), such that
the following conditions are satisfied: 1) for u,v € S; US| U(V(G;) N{u*,v*}), if v = epr(u),
then u = epr(v), 2) for u € {u*,v*} N (S1 U S]), we have epr(u) = u, and 3) epr(u*) = v*, if
and only if S; U S, US| US, =0 and i =n.

In the following observation, we state a result regarding a bound on the size and the time
required for the computation of F;(8,8’), which easily follows from its definition.

» Observation 29. Consider i € [n], 8 € S, and 8’ € S. Then, the size and the time
required for the computation of F;(8,8') is bounded by 20(Vklogk)

We will now associate a set of integers to every pair (8,8") € S x Si, for each i € [n].

Intuitively speaking, these sets of integers will give the “allowed” number of crossings for
the fragmented path set F;, which is the graph H restricted to vertices of G;. Consider
i €[n], 8 =(S1,5) € S, and 8' = (5}, 5%) € Si. We set Alw;(8,8') = {£ € [k]o | £ <
kE — max{cst;(S1) + 2 - cst;(S2), cst; (S]) + 2 - cst; (S5) }-

23:29

CVIT 2016

23:30

1092

1093

1094
1095

1096

1097
1098
1099

1100

1101
1102

1103

1104

1105

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

1118

1119

1120

1121
1122
1123
1124

1125

1126

1127
1128

1129

1130

Connecting the Dots (with Minimum Crossings)

Next, we will prove few observations regarding fragmented path sets in G;. To this end,
we first define the notion of a “compatible” fragmented path set.

» Definition 30. Consider i € [n], 8 = (S1, S2) € Sk, 8" = (5}, S5) € S%, and epr € F;(8,8).
We say that a fragmented path set F is G; is (¢, 8, 8’, epr)-compatible if the following conditions
are satisfied.

Satg(F) = (So USH U ({u*,v*} N (S1USH)).

Saty (F) = ((S1 U S\ {u”, v} U (({u", v} 0 (X UY3) \ (51U S7)).
eprp = epr.

cr(F) € Alw;(8,8").

ol A s

» Observation 31. Consider i € [n], 8 = (S1,52) € S, 8’ = (57,54) € S, and epr €
Fi(8,8"). Let F be an (i,8,8', epr)-compatible fragmented path set in G;. Then, the following
holds.

1. If z;y; € E(F), where j <1, then y; € Yio1.
2. Similarly, if y,x; € E(F), where j <1, then x; € X,;_1.

Proof. Let S = S;US; and S" = 5] US),. We only prove the first statement, as the proof of
the second statement is symmetric. Towards a contradiction, we assume that y; ¢)A/i,l, ie.
j <i—k—1 (recall that j < i). Now, consider the set Y;_1. Note that |§/}i_1\ =k+1 and
SI\{yi} CYiq. Let A=Y, 1\ (S, USyU{u*,v*}) and B =S\ {yi,u*,v*} CY;_;.
Note that size of A is at least k41— (|.S1]|+|S2|+2) and each vertex in A has degree exactly
2in F (see item 1 and 2 of Definition 30). Moreover, for a € A, and the (distinct) edges ua and
va in F intersect the edge x;y;. Similarly, the size of B is at least |S1|—3 and each vertex in B
has degree exactly 1 in F'. Moreover, for b € B, and the edge ub in F' intersects the edge x;y;.
Also, note that ANB = . Thus, cr(F) > 2|A|+|B| > 2(k+1—(|S]|+|S5|+1))+|S}]| =3 =
2k + 1 — (]S7| + 2|S5| + 4). Hence, we can obtain that cr(F) > k — (cst;(S7) + 2 - cst;(55)).
Recall that Alw;(8,8") = {£ € [k]o | £ < max{cst;(S;) + 2 - cst;(Sa), cst; (S]) + 2 - cst; (S5)}}-
From the above discussions we can conclude that cr(F) ¢ Alw;(8,8"). This contradicts that
Fis (i,8,8', epr)-compatible (see Definition 30). <

For a set X C X, we let X* = X \ {w*,v*}. Similarly, for a set Y C VY, we let
Y* =Y\ {u*, v}
» Observation 32. Consider i € [n], 8 = (S1,5:) € S, 8 = (S,5%) € S%, and epr €
Fi(8,8"). Let F be an (i,8,8', epr)-compatible fragmented path set in G;. If x;y; € E(F),
where j < i, then x;y; crosses exactly 2|X7 ;\ (S1 U S2)| + [Xj 1, 0S|+ [(Xj41: N
{u*,v*}) \ S1| many edges of F. Similarly, if z;y; € E(F), where j < i, then z;y;, crosses
exactly 2Y 7y, \ (S USH|+ Y70, 0S4+ (V414 0 {us0°}) \ 1| many edges of .

Dynamic Programming Algorithm for CM-HAM PATH

We are now ready to define the states of our dynamic programming table. For each i € [n],
8§ = (51,52) € Sk, 8 = (5,8 € Sy, epr € Fli, S, 5], and £ € Alw;(8,8'), we define
T[i, 8,8’ epr,{]

1, if there is a fragmented path set F' in G;, such that
T[i,8,8 epr,f] = Fis (i,8,8', epr)-compatible and cr(F) = ¢,

0, otherwise.

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1175

1176

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

A fragmented path set I in G; is said to realizes Ti, 8,8, epr,], if cr(F) = £ and F is
(i,8,8’, epr)-compatible.

In the following observation we show how we can use the table entries to resolve the
instance (G, k) of CM-HAM PATH.

» Observation 33. G admits a Hamiltonian path from u* to v* with cxr(H) < k if and only
if there is £ € [k]o, such that T[n, (0,0), (0,0),epr*, £] = 1, where epr* : {u*,v*} — {u*,v*},
such that epr(u*) = v* (and epr(v*) = u*).

Proof. Consider ¢ € [k]o, such that T[n, (0,0), (0,0), epr*,?] = 1. Furthermore, let F be a
fragmented path set that realizes T[n, (0, 0), (0,0), epr*,£]. As S =5’ =0, by item 1 and 3

of Definition 30, it follows that each vertex in V(G) \ {u*,v*} has degree exactly two in F.

Moreover, from item 2 of the definition, it follows that the degrees of u* and v* are exactly
one in F. From item 5 of the definition, it follows that cr(F) = ?é k. Note that as F'is a
fragmented path set, no component of it contains a cycle. From the above discussions we
can conclude that F' is a Hamiltonian path in G from u* to v* with at most k crossings.
For the other direction, let H be a Hamiltonian path from u* to v* in G with cr(H) =
7 < k. Observe that Alw,((0,0), (0,0)) = [k]o, and hence ¢ € Alw,((0,0), (0,0)). Also,
(0,0) € S’ NSy, and the function epr* belongs to F[i, (0,0), (0,0)]. It is easy to see that H
realizes T'[n, (0,0), (0,0), epry : 0 — (Z),a, and thus T'[n, (0, 0), (0, 0), epr*,] =1 <

We compute the entries of our dynamic programming table, recursively. The base case
occurs when ¢ = 1, in which case we can fill each of the entries in polynomial time. Then, we
fill all the other entries of our table by using recursive formulae. This can be achieved by an
exhaustive case analysis by considering how the vertices z; and y; “look like” in the graph
G, for i € [n] and ¢ > 1.

From Observation 27 and 29 it follows that the number of entries in our table is bounded
by 20(Vklogk) Moreover, an entry of the table can be computed in time bounded by
20(Vklog k), O(1) | Thys, the running time of our algorithm is bounded by 20(Vklogk)nO(1)

4.3 Kernel for CROSSING-MINIMIZING HAMILTONIAN PATH

We now move on to designing a kernel with O(k?) vertices, for CM-HaM PaTH. Let (G, k)

be an instance of CM-HAM PATH. Our strategy is to first identify a set of “bad structures”

in the graph G. We shall see that the number of bad structures must be O(k), for otherwise
(G, k) would be a no-instance. We then apply a set of reduction rules to bound the number
of vertices between two bad structures by O(k).

We start with the following definitions. For i € [n], the set {x;,y;} is called a duo at index
i; and {x;, y;} is said to be a good duo if z;y; € E(G), and a bad duo otherwise. For ¢ € [n—1],
the set {xs, i, Tit1,yit1} is called a quartet at index i if both {z;,y;} and {z;41,yi+1} are
good duos, and i is called an index ; and it is said to be a good quartet if either z;3;11 € E(G)
or z;11y; € F(G), and a bad quartet otherwise. In the above definitions, the index i is
referred to as the index corresponding to the duo or quartet, as the case may be.

For 4,5, where 1 < ¢ < j < n and |j — 4| > 3, the set X;; UY;; is said to be
an ensemble at (i,7) if exactly one of the following holds: (i) z,y, € E(G) for every
i <1 <J, TrYri1, Tryr—1 € E(G) for every i +1 < r < j— 1, but z;y,41,2;y,-1 ¢ E(G), o
(ii) z,yr € E(QG) for every i <7 < §, Tr_1Yr, YrZry1 € E(G) forevery i +1 < r < j—1, but
Tit1Yi, Tj—1Y; ¢ E(G).

» Observation 34. In polynomial time, we can determine whether G contains a bad duo, a
bad quartet, or an ensemble. The cases of duo and quartet must be straightforward as each

23:31

CVIT 2016

23:32

1174

1177
1178

1179

1180

1181

1182
1183
1184

1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

1200

Connecting the Dots (with Minimum Crossings)

Ti Zi Zi Tit1 T Tit1 x; Tyl
AY 7’
! N7
! "N
1 7/ AY
1 7’ AY
°
i Yi vi Yit1 vi Yit1 vi Yit1
bad bad
duo quartet
x; T

Yi Yj
ensemble

ensemble

Figure 11 Duos, quartets and ensembles. A dashed line segment shows a non-edge.

such structure has a constant size. As for testing whether G contains an ensemble, we can
go over all pairs of indices (1,7) and check whether X; j UY; ; is an ensemble in polynomial
time. <

We shall show that the number of ensembles, bad duos and bad quartets cannot exceed
O(k). We need the following two lemmas for that.

» Lemma 35. Let (G, k) be an instance of CM-HAM PATH and let P be a Hamiltonian path
in G. If v;y; € E(P), then cx(P) > 2|j —i| — 3. In particular, if j > i+ 2, then edge z;y;
intersects at least 2(j — i) — 3 edges x,ys € E(P), where r > i and s < j; and if i > j + 2,
then the edge z;y; crosses at least 2(i — j) — 3 edges x,ys € E(P), where r < i and s > j.

Proof. Assume that z;y; € E(P). If |j — i| < 1, then there is nothing to prove. So, assume
that |j —¢| > 2, where j > i+ 2. (The case where ¢ > j + 2 is symmetric.) Consider the sets
Y;_1 and X \ X;. We claim that E(P) contains at least 2(j — ¢) — 3 edges between X \ X;
and Yj;_1, i.e., edges x,ys with > ¢ and s < j. Before moving on to the proof of the above
statement, we explain how to use it to obtain the desired result. Note that each edge z,ys,
with 7 >4 and s < j crosses the edge x;y;. Thus, using our claim, we can obtain that the
edge x;y; crosses at least 2(j — i) — 3 edges z,ys € E(P), where r > ¢ and s < j.

We now prove our claim. Note that each vertex in Y;_;, except possibly two of them
(the terminal vertices of P), has degree 2 in P. Therefore, Zyeyj,l dp(y) =2 2(j—1) — 2.
Each vertex in Xj, except x;, can have at most two neighbors in Y;_1; x; can have at most
one neighbor in Y;_; (as z;y; € E(P)). That is, for each z € X;_1, |[Np(z) NY;_1] < 2,
and [Np(z;) NY;j—1| < 1. Therefore, > v [Np(z)NYj—1| < 2(i — 1) + 1. In other
words, E(P) contains at most 2(¢ — 1) + 1 edges between X; and Y;_;. The remaining
v dp(y) = Soex, IN#(@) NYjoa] > 20/ — 1) =2 20— 1) +1 = 2(j — i) — 3 edges
incident on Y;_; are between Y;_; and X \ X;. <

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

» Lemma 36. Let (G, k) be an instance of CM-HaM PATH and let P be a Hamiltonian path
in G. If z;y; ¢ E(P) for some i € [n], then there is an edge in P incident to exactly one of
x; ory; that participates in a crossing.

Proof. Let z;y; € E(P). Consider the case when j #4—1,i+1, i.e., |j —¢| > 2. Now from
Lemma 35 the edge z;y; crosses at least 2|j —i| —3 > 1 edges in P. So now we assume that
Np(xz;) C{yi—1,yi+1}. If 2; is not a terminal vertex of P, then it is adjacent to both y;_1
and y;41 in P, and then one of the edges incident on y; intersects either x;y;,—1 or x;y;+1.
So assume that x; is a terminal vertex of P. Assume without loss of generality that y;_; is
the unique neighbor of z; in P.

By symmetric arguments, either y; participates in at least one crossing, or y; is a terminal
vertex of P with either x;_1 or x;41 as its unique neighbor. So, assume that y; is a terminal
vertex of P. If x;_; is the unique neighbor of y;, then the edges x;y;_1 and z;_1y; intersect
each other. So, assume that x;11 is the unique neighbour of y;.

Consider the y;—1 — ;41 subpath of P. Let x,ys be the first edge on this subpath with
eitherr > i+land s<i—1lorr <i—1ands >i+1. Such an edge exists as P is connected.
So assume that 7 > i+ 1 and s <4 — 1. (The other case is symmetric.) First, note that it
cannot be the case that (r,s) = (i + 1,7 — 1), for this would imply that z;1y;—1 € E(P),
and hence P = x;y;_1T;1+1%;, which is not a Hamiltonian path. Therefore, either r > i + 1,
in which case z,ys intersects x;+1y;; or s < ¢ — 1, in which case x,y, intersects z;y;—1. <«

We are now ready to bound the number of vertex disjoint ensembles, bad duos and bad
quartets.

» Lemma 37. Let (G, k) be an instance of CM-HAM PATH. If G contains at least 4k + 1
bad duos, then (G, k) is a no-instance.

Proof. Let P be an optimal Hamiltonian path in G. We will show that if G contains 4k + 1
bad duos, then cr(P) > k + 1. Assume that G contains at least 4k + 1 bad duos. Let
i1,42,...,%q € [n] be the indices corresponding to bad duos, where d > 4k 4+ 1. Then, by
Lemma 36, the bad duo {mij , yij} participates in at least one crossing for every j € [d]. Also,
note that every crossing in P can involve at most four bad duos. (If {e, e’} is a crossing,
where e,e’ € E(P), then the four endpoints of e and ¢’ can belong to four different bad
duos.) Therefore, the number of distinct crossings involving the d bad duos is at least
[d/4] > [(4k+1)/4] > k+ 1. <

» Lemma 38. Let (G, k) be an instance of CM-HAM PATH. If G contains at least 4k + 3
vertex disjoint bad quartets, then (G, k) is a no-instance.

Proof. Let P be an optimal Hamiltonian path in G. We will show that if G contains 4k + 3
vertex disjoint bad quartets, then cr(P) > k+1. Assume that G contains at least 4k+3 vertex
disjoint bad quartets. Let i1,1o,...,7, € [n] be the indices corresponding to them, where
q > 4k + 3. Consider the set of vertices {@i,, i, ¥i,+1,¥i,+1 | j € [q]}. Bach vertex, except
two, are of degree 2 in P. Without loss of generality, assume that dp(z;;) = dp(y;;) = 2 and
dp(xi;41) = dp(yi;41) = 2 for every j =3,4,...,q.

Consider the edge z;,y;,. We claim that (at least) one of z;, or z;,4+1 participates in
at least one crossing. If z;,ys, € E(P) for some s # i3,i3 — 1, then |is — s| > 1 and hence
2iz — 1| — 3 > 1. As shown in the proof of Lemma 35, the edge x;,ys participates in at least
one crossing. So, assume that y;, and y;,_; are the two neighbors of x;, in P. Similarly,
either x;, 1 participates in at lest one crossing, or y;,+1 and y;, 2 are the two neighbors
of x;,41 in P. Now let z, be a neighbor of y;,, where r # i3. If r < i3, then z,y;, and

23:33

CVIT 2016

23:34

1246
1247
1248
1249
1250
1251
1252
1253
1254

1255

1256

1257

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

1283

1284

1285

Connecting the Dots (with Minimum Crossings)

Z;,Yi,—1intersect each other, in which case z;, participates in a crossing. Note that r # iz +1,
because {Zi,, Yiss Tis+1, Yis+1} is a bad quartet. If r > i3 + 1, then x,y;, intersect both
Tis+1Yis+1 and Tj,+1Yis+2, in which case x;,41 participates in two crossings. This proves the
claim.

The same argument applies to x;; and ;1 as well, for every 3 < j < ¢. Thus, every
bad quartet contains either a terminal vertex of P, or it participates in at least one crossing.
Therefore, if there are at least 4k + 3 vertex disjoint bad quartets, then at most two of
them contain terminal vertices of P, and hence least 4k + 1 of them participate in at
least one crossing. Any crossing in P can involve at most four distinct quartets. Hence,
cr(P) > k+1. <

» Lemma 39. Let (G, k) be an instance of CM-HAM PATH. If G contains at least 4k + 3
vertex disjoint ensembles, then (G, k) is a no-instance.

Proof. Let P be an optimal Hamiltonian path in G. We will show that if G contains 4k + 3
vertex disjoint ensembles, then cr(P) > k+ 1. Assume that G contains at least 4k + 3 vertex
disjoint bad ensembles.

Let X;; UY;; be an ensemble such that z;y,11,2;y;-1 ¢ E(G). Also assume that
this ensemble does not contain any terminal vertex of P, so that dp(v) = 2 for every
v € X, ; UY; ;. We shall show that X, ; UY; ; participates in at least one crossing. Assume
that z,y, € E(P) for every r, where i < r < j, for otherwise, by Lemma 36, X; ; UY; ; would
participate in a crossing. Consider the vertex y; 1. Since z;y;+1 ¢ E(G), we can assume
that z;42y;+1 € E(P), for otherwise, y;+1 would have to be adjacent (in P) to x, for some r
with |r — (¢ +1)] > 2. Then, by Lemma 35, y; 1 would participate in a crossing. We thus
have that z;11Y;+1%i12yi12 is a subpath of P. Observe then that either x;13y;12 € E(P),
or by Lemma 35, y;42 participates in a crossing. Proceeding this way, we can show that for
every s > i+ 1, either z,41ys € E(P) or y, participates in a crossing. Then, note that y;_q
(for s = j — 1) must participate in a crossing, since z;y;-1 ¢ E(G). <

We now proceed as follows. We have already identified certain “bad” sets of vertices, sets
of vertices that participate in at least one crossing. As Lemmas 37 - 39 show, there are only
O(k) many of such sets. We mark them. We then show that we can bound the number of
vertices in between two consecutive marked sets. Specifically, we do the following. First,
mark all the bad duos. Then, we mark bad quartets and ensembles, in that order. (A set
of vertices, say S C V(G) is marked only if none of its elements is already marked.) For
i € [n], 7 is said to be the index of a marked set if the bad duo/quartet is marked. Moreover,
i,j € [n] are said to be indices of a marked set, if X; ; UY; ; is a marked ensemble. We now
introduce reduction rules that are to applied exhaustively. After an exhaustive application of
these rules, the number of unmarked vertices shall be bounded by O(k?). The number of
vertices in every ensemble shall be bounded by O(k). In particular, Rule 1, among other
things, bounds the number of vertices in ensembles. (See Lemma 41 for precise bounds.)

Rule 1: Let i and j be the indices of two consecutive marked sets such that j —i > 8k +3
(or i =1 and j be the index corresponding to the first marked index, or j = n and i be
the index of the last marked set, or ¢ and j be such that X; ; UY; ; is a marked ensemble.)
And, z,yr11, 41y € E(G) for every v, where i + 4k +1 < r < j—4k — 1.

Do: Delete vertices x, and y,. for every ¢ + 4k + 2 < r < j — 4k — 2, and add edges
Titk+1Yj—k—1 and ZTj_ g 1Yitk+1-

Parameter: No change.

1290

1286

1287

1288

1289

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Titdk+1 Tj—ak—1 Titdk+1 Tj—ak—1
Rule 1
—
Yit+dk+1 Yj—ak—1 Yitak+1 Yj—4ak—1
Titdak+1 Tj—ak—1 Titak+1 Tj—ak—1
Rule 2

Yit+ak+1 Yj—ak—1 Yitak+1 Yj—ak—1

Titak+1 Tj—ak—1 Titak+1 Tj—ak—1
Rule 3
Yitdak+1 Yj—ak—1 Yitak+1 Yj—ak—1

Figure 12 Reduction Rules 1,2 and 3. A dotted segment shows a non-edge.

Rule 2: Let ¢ and j be two consecutive marked indices with j—i > 8k+3 (or i = 1 and j
be the first marked index, or j = n and ¢ be the last marked index.) And, 2,41y, ¢ E(G)
for some r, where i +k+1<r<j—k—1

Do: Delete vertices x,. and y, for every i + k+2 < r < j — k — 2, and add edge
Litk+1Yj—k—1-

Parameter: No change.

Rule 3: Let i and j be two consecutive marked indices with j—i > 8k+3 (or ¢ =1 and j
be the first marked index, or j = n and ¢ be the last marked index.) And, z,y,+1 ¢ E(G)
for some r, where i +k+1<r<j—k—1

Do: Delete vertices x, and y, for every i + k+2 < r < j — k — 2, and add edge
Tj—k—1Yi+k+1-

Parameter: No change.

» Lemma 40. Rules 1,2 and 3 are safe.

Proof. We show safeness of Rule 1 only. The proofs for Rules 2 and 3 are analogous. Let
(G', k") be the instance obtained from (G, k) by a single application of Rule 1. We shall show
that (G, k) is a yes-instance if and only if (G’, k') is a yes-instance. Let P be an optimal
Hamiltonian path in G with terminal vertices u and v such that index(u) < index(v).

Note first that &' = k. Assume that (G, k) is a yes-instance. Then, cr(P) < k. Consider
the 4k+1 duos {ZZL’H_I, yi+1} 5 {$i+2, yi+2} ey {$i+4k+17 yi+4k+1}~ Since CI‘(P) < k’, and since
any crossing can involve at most four of these duos, at least one of these 4k + 1 duos does
not participate in any crossing. Let i’ be the index corresponding to that duo. Then, by
Lemma 36, z,y, € E(P). Similarly, there exists j' € {j — 1,7 —2,...,7 —4k — 1} such
that the duo {z;/y;/} does not participate in any crossing and hence z;y;; € E(P). Note
that in P, no vertex in Xy j UYy ;v is adjacent to any vertex in V(G) \ (Xi ;» U Yy 1),
for otherwise, {x;,y;} or {z;/,y;} would participate in a crossing. Let Py, be the path
TirYir it 41Yir 415 - - o, T —1Y 1 =15 Y57

Traverse along P from u to v. Note that on this traversal, among the two edges x; y;/
and x;/y;/, the edge x;/y; appears first. For otherwise, at least one of the duos {x;/, vy} or
{zj/,y;,} would participate in a crossing. Assume without loss of generality that =, appears
first, followed by ;» in P. Then, P must be as follows: starts from u, passes through all

23:35

CVIT 2016

23:36

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

1324

1325
1326

1327

1328

1329

1330
1331
1332
1333
1334
1335

1336

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

1355

Connecting the Dots (with Minimum Crossings)

vertices x,,y, with r < i, enters z;;, goes to y;; along the edge x;y, , passes through all
vertices of (X j» UYj j/), reaches y;/, then passes through all vertices ., y, with r > j’, and
finally ends at v. Otherwise, at least one of the duos {z;/, y, } or {z;,y; } would participate
in a crossing. Since P passes through all vertices of (X;/ ;» UYj /), and since P contains no
edge with one endpoint in (X, j» UYj ;) and the other in V(G) \ (X ;» UYy), and since
the path Py ;s has no crossings, we can assume that P;; is a subpath of P. Let P’ be the path
obtained from P by replacing the x;44r12-yj—ar—2 subpath with the edge =i;ar+1Yj—ar—1-
Then P’ is a Hamiltonian path in G’ and cr(P) = cr(F’).

Conversely, assume that (G, k') is a yes-instance and let P’ be an optimal Hamilto-
nian path in G’. By repeating the arguments used above, we can show the following:
(i) there exist ' € {i+1,i+2,...,i+4k+ 1} and j € {j — 1,5 —2,...,j — 4k — 1} such
that the duos {zyy,} and {x;/,y;/} do not participate in any crossing, (ii) z,y. € E(P")
for every ¢/ < r < j/, and (iii) either the edge e = z;1a511yj—ak—1 € E(P") or the edge
€ = x;_ap_1Yivak+1 € E(P"). Construct a Hamiltonian path P of G by replacing the
edge e or €', (whichever is present in P”) with Py ;. Note that the path Py ;s contains no
crossings, and therefore, cr(P"') = cr(P”) < k' = k. <

Rules 1-3 show that we can safely remove vertices between two consecutive marked sets
as well as between the boundaries of a marked ensemble, if their number exceeds O(k). This
leads us to the following result.

» Lemma 41. Given an instance (G,k) of CM-HAM PATH, let (G' k') be the instance
obtained from (G, k) by an exhaustive application of Rules 1-3. We have the following.

1. The number of marked sets in G is at most 3(4k + 3).

2. The number of marked vertices is at most 64k? + 104k 4 38.

3. The number of vertices between two marked sets (and between (x1,y1) and the first marked
set, and between the last marked set and (x,,yn)) is at most 2(8k + 2).

4. Total number of unmarked vertices in G' is at most (4(4k +3) +1)(2(8k +2)) + 1 =
256k% + 272k + 53.

5. |[V(G")| < 320k% + 376k + 91.

Proof. 1. There are three types of marked sets - bad duos, bad quartets and ensembles. By
Lemmas 37 - 39, there can be at most 4k + 3 of each of them. Therefore, there can be at
most 3(4k + 3) marked sets.

2. e The number of marked duos is at most 4k + 1, and there are 2 vertices in each duo.

So, the number of vertices in marked duos is at most 2(4k + 1).

e The number of marked quartets is at most 4k + 3, and there are 4 vertices in each
quartet. So, the number of vertices in marked quartets is at most 4(4k + 3).

e The number of marked ensembles is at most 4k + 3. Since Rule 1 has been applied
exhaustively, there are 2(8k + 4) vertices in each marked ensemble. If ¢ and j are the
indices of a marked ensemble, then there are 8k + 4 = (8k + 2) vertices between z;
and z;. These vertices, along wih the two vertices x; and z; contribute 8% + 4 to the
sum. Similarly, y; and y;, and the 8k + 2 vertices in between them contribute 8k + 4.
Thus, the number of vertices in each marked ensemble is at most 2(8% + 4). Hence,
the number of vertices in marked ensembles is at most 2(4k + 3)(8k + 4).

Adding these bounds, we get that the number of marked vertices is at most 2(4k + 1) +

4(4k + 3) + 2(4k + 3)(8k + 4) = 64k> + 104k + 38.

3. Since Rules 1-3 have been applied exhaustively, we must have that the number of vertices
between two marked sets (and between (x1, 1) and the first marked set, and between
the last marked set and (z,,y,)) is at most 2(8k + 2).

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

4. There are at most (4k 4+ 3) + 1 unmarked “regions” - (4k + 3) — 1 regions between the
marked sets, and two additional regions - the one that precedes the first marked set and
the one that follows the last marked set. Each such region contains 2(8k + 2) vertices,
(except possibly the last region, which may contain 2(8k + 2) + 1 vertices, the “plus 17
owing to the fact that |X| could be 1+ |Y|. Summing up, we get that the number of
unmarked vertices is at most (4(4k 4 3) + 1)(2(8k + 2)) + 1 = 256k? + 272k + 53.

5. Summing up the number of marked and unmarked vertices, we have |V (G’)| < 320k? +
376k 4 91.

<

We have thus proved the following result.

» Theorem 42. CROSSING-MINIMIZING HAMILTONIAN PATH, parameterized by the number
of crossings k, has a kernel with O(k?) vertices.

5 XP algorithm and W[1]-hardness for CROSSING-MINIMIZING PATH

In this section, we show that CM-PATH is W[1]-hard, but can be solved in time n®®*). The
problem is formally stated below.

CROSSING-MINIMIZING PATH (CM-PATH) Parameter: k
Input: A two-layered graph G, vertices s,t € V(G) and a non-negative integer k.
Question: Does G contain a path from s to ¢ with at most k crossings?

5.1 XP Algorithm for CM-PATH

We first consider the case when k = 0. We show that if £ = 0, then CM-PATH can be solved
in polynomial time. (We will use this fact while designing the XP algorithm for the general
case.) Specifically, we consider the following problem.

ZERO-CROSSING PATH
Input: A two-layered graph G, vertices s,t € V(G).
Question: Does G contain a path from s to ¢ with no crossings?

5.1.1 Algorithm for ZERO-CROSSING PATH

Consider an instance (G, s,t) of ZERO-CROSSING PATH. An s-¢ path in G with no crossings
is called a feasible path. We now state and justify some assumptions that we make regarding
the vertices s and ¢.

1. We assume that s € X and t € Y. If this were not true, then we can arrive at an instance
where our assumption is satisfied as follows. If s € Y| then by exchanging the roles of X
and Y, we can satisfy our assumption that s € X. Now consider the case when t € X.
Note that in the above case, it is enough to find a path between s and a vertex v € N(t),
whose edges do not cross the edge (v,t). If we have an algorithm 4 that finds a path
with no crossings when our assumption is satisfied, then we can use A to find a path with
no crossings in the case when s € X and ¢t € X as follows. For each (v,t) € E(G), delete
all the edges in G that cross the edge (v,t) in G and then delete the edge (v,t). In the
resulting graph (with the same two-layer drawing as G) use A to find a path P, (if it
exists) with zero crossing from s to v. Now add the edge (v,t) to P, and return it. If for

23:37

CVIT 2016

23:38

1301
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

1408

1409
1410
1411
1412

1413

1414

1415

1416
1417

1418

Connecting the Dots (with Minimum Crossings)

each v € N(t), the path P, does not exist, then report that such a path does not exist.
The correctness of the above procedure is clear from its description.

2. index(s) < index(t). Otherwise, we can reverse the ordering of vertices in X and Y in
the two-layer drawing of GG, and arrive at our assumption.

3. s = and t = y,, . To see this, consider a feasible path P. We first claim that P cannot
contain two distinct vertices x; and z; with ¢ < index(s) and j > index(s). That is,
either index(v) < index(s) for every vertex v € V(P) N X, or index(v) > index(s) for
every vertex v € V(P) N X. Suppose not. Let z;,z; € V(P) with ¢ < index(s) and
j > index(s). Traverse from s to ¢ along P. Assume that in this traversal, z; appears
first and then z;. (The other case is symmetric.) Let y; be the unique neighbor of s in
P. Then, the z;-z; subpath of P must cross the edge sys. But this is not possible as P
is a feasible path. In light of this claim, we can reduce the given instance of our problem
to two instances of the same problem such that the given instance is a yes-instance if and
only if at least one of the reduced instances is a yes-instances. To create the first instance,
we delete from X all vertices x; with ¢ < index(s). To create the second instance, we
delete from X all vertices x; with ¢ > index(s) and reverse the orderings of vertices
in X and Y. In both the reduced instances, we have index(s) = 1. Using symmetric
arguments, we can show that index(t) = ny.

We use a simple dynamic programming algorithm to solve ZERO-CROSSING PATH. For
everyi=1,2,...,nx,j=1,2,...,ny and £ =,1,2,...,n—1, we define A[i, j, ¢] and BJ[i, j,{]
as follows.

1, if G contains a feasible path P of length ¢ from s(= z1) to y;
Ali, 3,0 = such that (z;,y;) is the last edge of P.

0, otherwise.

1, if G contains a feasible path P of length ¢ from s(= z1) to x;
Bl[i,j,0 = such that (y;,z;) is the last edge of P.

0, otherwise.

In the above, the length of a path is the number of edges in it. We start by stating our
base cases for the computation of A[.,.,.] and B[.,.,.]. Note that A[s,j,¢] = 0 if £ is even,
and Bli,j,¢] = 0if £ is odd. Also, Afi,j,1] =11if i =1 and z1y; € E(G), and Afi,5,1] =0
otherwise. In what follows, consider an odd 1 </<n—1landaneven 1 </¢ <n—1. We
recursively compute (in order of increasing ¢ and ¢') A[.,.,.] and B[.,.,.] as follows.

B[i7j7 Z/] = \/ A[ilmja ¢ — 1] (1)

i'<i
=, €N (y;)

Alij. 0= \/ Bli,j’,t—1] (2)
i'<i
yj/GN(zi)

Correctness of the recursive formulae. We show the correctness of Equation 1 (using
similar arguments we can establish the correctness of Equation 2). For the forward direction,
suppose there is a feasible path P of length ¢’ from x; to z;, where (y;,z;) is the last edge.

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Consider the neighbor z;« € {z1,2z2,---,2;_1} of y; other than z; in P. Note that z;-
exists as P is a feasible path from z; to x; and G is a bipartite graph. But then, we have
Ali*, 4,0 —1] =1, as P—{a;} is a desired type of feasible path. Now for the reverse direction,
consider an integer 1 < ¢* < ¢, such that z;«+ € N(y;) and A[i*,j,¢' —1] = 1. Let P be a
feasible path from z; to y;, where (z},y;) is the last edge of P. Furthermore, let P’ be the
path obtained from P by adding the edge (y;,z;). Note that no edge in P crosses the edge
(yj, ;) as P is a feasible path with (z7,y;) as the last edge. This implies that P’ is a feasible
path from x; to z; of length ¢ with (y;, ;) as the last edge. Thus, B[s,j,¢] = 1.

Note that each Ali, 7,] and Bli, j, £] can be computed in O(n) time, and (G, s = z1,t =
Yny) of ZERO-CROSSING PATH is a yes-instance if and only if V; ¢A[i, ny, ¢] = 1. Since the
number of choices for (4, j,) is bounded by n3, we can solve ZERO-CROSSING PATH in O(n*)
time. For future reference, we state this result as follows.

» Lemma 43. ZERO-CROSSING PATH, on an instance (G, s,t) can be solved in time O(n?),
where n = |V(G)|.

We note that although we gave an algorithm for the decision version of ZERO-CROSSING
PATH, we can use memoization to find an s — ¢ path with no crossings, if it exists. This leads
us to the following result.

» Lemma 44. ZERO-CROSSING PATH, on an instance (G, s,t) can be solved in time O(n?),
where n = |V(G)|. Furthermore, for a yes-instance we can compute an s —t path with no
crossings in time O(n?).

5.1.2 Algorithm for CROSSING-MINIMIZING PATH

Let (G, s,t,k) be an instance of CM-PATH. We first describe the intuition behind the
algorithm. Since the desired running time of the algorithm is n®*), we have a lot of leeway in
“guessing” how a prospective solution looks like. Assume that (G, s,t, k) is a yes-instance of
CM-PATH, and let P be an s—t path with cr(P) < k. We start by analysing how the path P
looks like, in the graph G. Some edges of P are involved in crossings, and some are not. Let

E¢s be the set of edges in P that participate in at least one crossing. Note that |Eqs| < 2k.

Consider the graph H = P — F. (where we delete only edges, and not the vertices). Each
connected component of H is a path (or an isolated vertex). As |Eqs| < 2k, the number
of connected components in H is bounded by 2k + 1. Consider a connected component p
(which is a path) of H which has at least 2 vertices. Let z, and x; be the vertices with
smallest and largest index in V(ﬁ) N X, respectively. Similarly, let y. and y4 be the vertices
with smallest and largest index in V(ﬁ) NY, respectively. Note that Pisa path in the graph
G Xap UY, 4], where x4, Tp, Ye, Ya € V(ﬁ) (these vertices need not be all distinct). We will
show that no edge in E(P) \ E(]3) has an endpoint from X, 41 4-1 U Yeq1,4—1 and at most
two vertices from {24, zp, Y, ¥4} can be an endpoint of an edge from E(P)\ E(P). Recall
that edges from P do not participate in any crossings. The above mentioned properties
help us to argue that any path P (with same endpoint as P and no crossings) from the
graph G[X,, UY, 4] can be used instead of 13, and such a path can easily be computed using
the algorithm for ZERO-CROSSING PATH from Section 5.1.1. Roughly speaking, the above
arguments allow us to “guess” the endpoints (which are at most 4k + 2) and (four indices
of) the regions in which the paths in P — F are contained. As the size of Es is bounded
by 2k, we can afford to “guess” the set E.s. Finally, we argue that the computed paths
(for some guess of regions and endpoints) and (for some guess of) the edges participating in
crossings can be “sewn” together to give an s — ¢ path with at most k crossings (in the case
of a yes-instance).

23:39

CVIT 2016

23:40

1465

1466

1467

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487

1488

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

1503

Connecting the Dots (with Minimum Crossings)

—————_ e e e e e e e e e, mmmmm = e a s

Figure 13 An s-t path. Sets of vertices encased by dashed rectangles form the ¢-regioning.

Before moving to the formal description of the algorithm, we introduce some notations
that we will follow in the remainder of the section.

Notations. For a subset E' C F(G), G[E'] denotes the graph with vertex set V(E')
and edge set E’. Suppose that P is an s — ¢ path in G that we are seeking for, with
E.s C E(P) as the set of edges participating in some crossing (in P). Consider an integer
1< £ < 2k+ 1. (Roughly, ¢ is the number of connected components with at least one edge
in the graph P — Egs.) Let A = {(a,b,¢,d,u,v) | a,b € [nx],c,d € [ny],a <b,c < d,u,v €
{Za, T, Ye,ya},and u # v}. (Tuples from A will be used to obtain “regions” and endpoints
for paths with at least two vertices in P — Eqs.)

For each i € [¢], consider some r! = (af,b%, ¢!, d*, u?,v?) € A. We say that the collection
{ri | i€ [f]} is an L-region (or simply region, when the context is clear) if for every distinct
i,j € [€], (exactly) one of the following holds: 1) a’ < b < o/ < ¥ and ¢! < d' < & < &,
or 2) al <V <a <band ¢ <d7 < <d'. Let Ry be the set of all f-regions. Note that
| R¢| and the time required to compute Ry, are both bounded by n®®) (as £ < 2k + 1).

Consider an f-region R = {r; | i € [{]} € Ry, where for i € [¢], we have r, =
(a®,b%, ¢, d*, ut,v?). R is an f-important region (or simply, important region, when the context
is clear) if for every i € [€], (G[X,i pi, Yei i), u’,v") is a yes-instance of ZERO-CROSSING
PaTH. In the above, for ¢ € [{], the graph G[X,i yi,Yei ¢:1] is the two-layered graph with
vertex bipartition X, ;i and Y 4i, where the two-layer drawing is obtained by restricting the
two-layer drawing of G to vertices in X i UY¢i gi. Let T, € Ry be the set of all /-important
regions. Note that |Z,| is bounded by n@®) . Moreover, as ZERO-CROSSING PATH admits
a polynomial time algorithm (see Section 5.1.1, Lemma 43), we can compute Z, in time
bounded by n®®).

Algorithm. We are now ready to describe our algorithm. If there is a subset E' C E(G),
such that G[E'] is an s — t path with |E’| < 2k and cr(G[E']) < k, then return Yes.
Hereafter, we assume that such a set E’ does not exist. Thus, for any s — ¢ path 13, such
that cr(13) < k (if it exists), we have E(P) > 2k + 1, and there is at least one edge in E(IS)
which does not participate in any crossing in p.

Consider an integer 1 < £ < 2k + 1, and R = {r® | i € [{]} € Z,, where for i € [{],
rt = (a,b%, ¢!, d*,u?, v?). Using Lemma 44, for each i € [], we compute a path P’ with
endpoints v’ and v’ with zero crossings in the two-layered graph G[X i yi, Yei gi]. (P's exist
by the definition of important regions.) Let E = Uicrg E(P?). Let E be the set of all edges
which are in E or intersect an edge in E. If there is a subset E/ C E(G) \ E of size at most
2k, such that G[E U E'] is an s — ¢ path with cr(G[E U E']) < k, then return Yes.

Otherwise, for no integer 1 < ¢ < 2k and R € Zy, there is E' C E(G) \E of size at most
2k, such that G[E U E'] is an s —t path with cr(G[E U E']) < k. In this case, the algorithm
return No.

In the following lemma, we show that the algorithm is correct.

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

» Lemma 45. The algorithm presented for CM-PATH is correct.

Proof. Notice that if the algorithm returns Yes, then indeed there is an s — ¢ path with at
most k crossings. We will now show that if (G, s,t, k) is a yes-instance of CM-PATH, then
the algorithm returns Yes. If there is an s — ¢t path P with at most 2k edges, such that
cr(ls) < k, then the algorithm always reports Yes. Otherwise, every s — ¢ path in G with at
most k crossings has at least 2k 4+ 1 edges. Let P be an s — ¢t path in G, such that cx(P) < k
and E(P) > 2k + 1. Let E* C E(P) be the set of edges which participate in some crossing
in P. Note that at most 2k edges of P can participate in a crossing, and thus |E*| < 2k.
Let Ey = E(P)\ E*. Let C be the set of connected components in G[E;], and £* = |C|. As
|E(P)| = 2k + 1 and |E*| < 2k, we have E; # (. Thus, 1 < ¢* < 2k + 1. Each C € C is
a path on at least 2 vertices, as it is a subgraph of P and contains at least one edge. Let
C={P, P, ,Ppy}. Consider i € [(*]. Let u’ and v’ be the end vertices of P!, where u’
comes before v’ in the path P. Furthermore, let a’ and b be the lowest and highest indices
of vertices in V(P?%) N X, respectively (possibly a* = b?). We note that a® and b® exist as
G is a bipartite graph and P’ is a path with at least one edge. Similarly, we let ¢! and d°
be the lowest and highest indices of vertices in V(P?) NY, respectively. For i € [¢*], we let
ri = (ai, b, ¢, di ut,vf), and R = {r' | i € [¢*]}.

We will argue that R C A. (Recall that A = {(a,b,c,d,u,v) | a,b € [nx],c,d € [ny],a <
b,c < d,u,v € {Zq,Tp,Ye,ya},and u # v}.) To this end, consider i € [¢*]. By construction,
we have a® < b%, ¢ < &, a',b* € [nx] and ¢!, d* € [ny]. As P’ has at least one edge, we
have u® # vi. Let Z' = {@qi, Tpi, Yei, Yqi - We will now argue that u?,v* € Z¢. Towards
a contradiction, assume that v’ ¢ Z%. (Similar arguments can be given for the case when
vt ¢ Z') Note that u’ € Xgiy1pi1 U VYeyq 1. Suppose that u' € Xgiyqpiy (the
other case is symmetric). Let y; be the neighbor of v’ in P’. Note that y; € Y. gi. As
ul € Xgig1,pi—1, We have a’ < b'. Assume that x,: is the first vertex in the subpath of P?

from u® to v® (the other case is symmetric). Let P’ be the subpath of P! from z,: to .

As a’ < b/, there is an edge in P’ which intersects the edge u'y;. This contradicts the fact
that cr(P?) = 0. From the above discussions we can conclude that for each i € [¢*], we have
ri € A.

We now argue that R is an £*-region. To this end, consider distinct 7, j € [¢*]. Without
loss of generality, we assume that a® < a’. By construction, we have x4, Tpi, Yei, ygi € V (P?)
and Tgi, Tyi, Yei> Yai € V (P7). Also, P? and P7 are distinct connected components in C with
at least one edge each. We recall that edges in P? and P’ do not participate in any crossings
(in P). From the above discussion, we can conclude that at < b < al <. Now we will
argue that ¢! < d’ < ¢ <. If ¢ < ¢, then there will be an edge in P? and an edge in P?
which will intersect. Note that ¢! # ¢/ as y. € V(P?) and y.; € V(P?), and P! and P? are
connected components in C. Similarly, we have that d’ # ¢/. If ¢! < ¢/ < d?, then we can
obtain a pair of edges in E(P?) N E(P?) which intersect each other. Thus, we conclude that
¢t < d' < ¢ < dJ. From the above discussions we can conclude that R is an £*-region.

As R is an £*-region, and for each i € [¢*], the path P’ is a path from u’ to v* in the
graph G[X,i 3 U Y, 4i] with cr(P?) = 0, we can conclude that R € Zy«. In what follows, we
observe some properties of edges in E* (the set of edges participating in a crossing in P)
which will be useful later. Consider zy € E* and i € [(*]. Observe that z ¢ X, i \ {u’, v/}
and y ¢ Y. 4 \ {u’,v7}. Furthermore, if u'v’ € E(G), we have zy # u'v/. From the above

discussions, we can conclude that the edge xy does not belong to the graph G[X i pi UYi gi].

We also note that the edge xy does not cross any edge in the graph G[X,i pi U Y gi].
For i € [¢*], let P’ be the path from u’ and v’ in the graph G[X,i 4 U Ya 4] with
cr(P") =0, computed by the algorithm (P* exists as R € Zy+). Let E = U;ep-) E(P"). Note

23:41

CVIT 2016

23:42

1552
1553

1554

1555

1556

1557
1558
1559
1560

1561
1562

1563

1564

1565

1566
1567
1568
1569

1570

1571

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590

1591

Connecting the Dots (with Minimum Crossings)

that by the properties of E* discussed earlier, we have ENE* =0 and no edge of E* crosses
an edge in E. But then, G[F U E*] is an s — ¢ path with cr(G[FE U E*]) < k. Thus, the
algorithm will return Yes. This concludes the proof. <

> Lemma 46. The algorithm presented for CM-PATH is correct, and runs in time n®®),

where n is the number of vertices in the input graph.

Proof. The claimed running time of the algorithm follows from the following facts. The
number of important regions, |Z,|, and the time required to compute Z, are both bounded
by n®®). The size of the subsets E’ C E(G) considered by the algorithm is bounded by
2k. Moreover, ZERO-CROSSING PATH admits an algorithm running in polynomial time
(Section 5.1.1, Lemma 44). <

Lemma 45 and 46 immediately lead us to the following result.

O(k)

» Theorem 47. CM-PATH admits an algorithm running in time n , where n is the

number of vertices in the input graph.

5.2 WI[1]-hardness of CROSSING-MINIMIZING PATH

In this section, we show that CROSSING-MINIMIZING PATH, when parameterized by the
number of crossings is W[1]-hard.

We prove the W[1]-hardness of CROSSING-MINIMIZING PATH by giving an appropriate
reduction from the problem MULTI-COLORED CLIQUE, which is known to be W[1]-hard [22].
The MULTI-COLORED CLIQUE problem is formally defined below.

MuULTI-COLORED CLIQUE Parameter: k
Input: A k-partite graph G with a partition Vi, Va,..., Vi of V(G) such that for all
i.j € [k, [Vil = [V}l

Question: Is there X C V(G) such that, for all ¢ € [k], |X NV;| =1 and G[X] is a
clique?

Let (G, V1, Va,. .., Vi) be an instance of MULTI-COLORED CLIQUE. We create an instance
(G", X,Y,s,t,k") of CROSSING-MINIMIZING PATH such that (G, Vi, Va, ..., Vi) is a yes-
instance of MULTI-COLORED CLIQUE if and only if (G', X,Y, s,t,k’) is a yes-instance of
CROSSING-MINIMIZING PATH. Here, G’ is a two-layered graph.

The intuitive description of the reduction is as follows (see Figure 14). Let ¢ : {(,7) |
i,j €kl,i<j} — [(g)] be the lexicographic ordering of elements in {(¢,7) | 4,7 € [k],i < j}.
Also, for r € [(g)}, we let ¢(r(1),7(2)) = r. We note that the only use of ¢ is to order the
elements of {(4,7) | 1,7 € [k],7 < 7}, which will be helpful in describing the construction.
The main idea behind the construction is to create two special vertices s and ¢, and create
an s —t path in G’, which selects a vertex from each V;, for ¢ € [k] and an edge between
each pair of color classes. Moreover, the number of crossings in such a path will ensure
that the selected set of vertices form a clique in G. Towards this, for each V;, where ¢ € [k],
we have an axis-parallel box V;, containing an edge (a vertical line) corresponding to each
vertex in V;. Similarly, for each V;, V;, where i, j € [k] and ¢ < j, we have an axis-parallel
box &;;, containing a pair of non-adjacent vertices corresponding to each edge between V;
and V;. The boxes V;, where ¢ € [k] and &;;, where i < j and ¢,j € [k] are arranged in a
linear fashion to create an s — ¢ path in G’ (see Figure 14). We note that the ordering among
boxes &;;s is obtained by using the function ¢. In the construction, we added an edge in V;
corresponding to each vertex in V;, while we added a pair of (non-adjacent) vertices in &;; for
an edge between V; and V;. The motivation behind this is to add a path between the pair of

1595

1596

1607

1592

1593

1594

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

" Vi L Vo * Vi
1

VYW
NINK L KA

*

Y Y3 Ui

s=u

)

Figure 14 A schema of the reduction. Here, red dotted paths are pairwise vertex disjoint and
have vertices outside the box they are drawn in.

Figure 15 An illustration of various slots and boxes in a vertex selection gadget.

vertices (corresponding to an edge between V; and V;), where the edges of this path crosses
the boxes V; and V; so as to ensure that the vertices and edges selected are compatible. Now
we move to the formal description of the reduction.

For i € [k], we let the vertices in V; to be {vi,vi,... v¢}. Consider i, € [k], where i # j.

We let B = {e¥ e, ..., efj;lj} be the edges between V; and V;, where m;; is the number
of edges between V; and V. Note that E;; and Ej; are the same sets. Whenever we are
considering the vertex set V; and the edge set E;; (= Ej;), we will use the lexicographic
ordering of edges in E;; whose first coordinate is given by the index of vertex in V; and the
second coordinate is given by the index of vertex in V;. We will denote such a lexicographic
ordering by lex?? (= lex!"). For ¢ € [n], all the edges in E(G) N {vivd | p € [n]} appear
consecutively in the ordering Iex;:j . Therefore, by Iex;:j [£], we denote the sub-ordering obtained
from Iexﬁj of edges in E(G) N {Uévg | p € [n]}. Also, by m;;[¢] we denote |E(G) N {v}jv{; |pe
(]}

Vertex selection gadget. Consider i € [k]. We construct the vertex selection gadget V;
that will be responsible for selecting a vertex from the color class V;. The gadget V; will be
placed in an axis-parallel rectangle (for ease of description). Consider ¢ € [n]. Corresponding
to the vertex v}, we add an edge zty? to E(H) (and to V;), and add vertices z% and yi to X
and Y, respectively. There are two axis-parallel rectangles (often referred to as boxes) F;
and Bj in the front and the back of the edge z}y}, respectively (see Figure 15). Boxes F} and
Bé contains m;;[¢] many slots (small rectangular axis-parallel boxes), where some portion of
the Vertex-Edge compatibility gadgets will be placed. We let o (i, X) = (2%, 2%,...,2%) and
aV(i,Y) = (yi,v5,...,y%). In the rectangle V;, vertices in {z% | £ € [n]} and {y} | £ € [n]}
are placed in the order given by ¢¥ (4, X) and ¢ (i,Y), respectively. The gadget V; comprises
of two additional rectangular boxes, namely H; and T; each containing m; slots, where
m; = [{(v,u) | v € Vi,u € V(G) \ V;}|. These m; slots are classified into (k — 1) groups
corresponding to each E;;, where j € [k] \ {i}. A group of slots allocated for j € [k] \ {i} in
H; and T; will be denoted by H;: and Tji, respectively. Moreover, H]Z (and T;) contains m;;
consecutive slots, the first group (starting from left) being assigned to the smallest element

23:43

CVIT 2016

23:44

1631

1623
1624
1625
1626
1627
1628
1629
1630
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

1650

1651

1652
1653
1654
1655
1656

1657

1658

1659

1660

1661

Connecting the Dots (with Minimum Crossings)

3 ylF.e

Figure 16 Vertex-Edge compatibility.

in [k]\ {i}. In the slots of H; and T}, we place some portion of the Vertex-Edge compatibility
gadget for V; and E;; in the order given by Iex? .
Edge selection gadget. Consider 7,j € [k], where i < j. We construct the edge selection
gadget &;; that will be responsible for selecting an edge from E;;. The gadget &; will be
contained in an axis-parallel rectangle, and we would refer to this rectangle by &;; as well.
For each ¢ € [m;;], corresponding to the edge eéj , we add two non-adjacent vertices xéj , yzj
to V(H) (and &;;) and add xzj and yéj to X and Y, respectively. The pairs of vertices xéj
and yéj are placed according to the ordering Iexij of edges.
Vertex-Edge compatibility gadgets. As described above, the edge selection gadget
consists of a pair of non-adjacent vertices for every edge of GG. In order to ensure compatibility
between the vertex selection and the edge selection gadgets, we add a path between the
two vertices of the edge selection gadget. Consider i,j € [k], where ¢ < j, and an edge
e =€ =viv] € E;j. We add a path P(e) between z%/ and y* with 8 internal vertices
as follows (see Figure 16). Towards this we add 8 new vertices as follows. For each
Z € {H;,H;,B,Bi}, we add a vertex z[Z,¢e] (and add it to X). Similarly, for each
Z € {T;, Ty, F},F}}, we add a vertex y[Z, e] (and add it to V). Next, the path P(e) is set to
be yiJ, x[H;, €], y[F}, e, x[Bi, €], y[T;,], x[Hj, e], y[F?, €], x[Bi, e], y[T}, e], 9 (see Figure 16).
Overall connections. For each i € [k], we add an edge z}y}, and add the vertex z} to X
and y; to Y. The edge z]y; is placed right before the rectangle V;. Next, we describe the
connection between various vertex selection gadgets. For i € [k], we add all the edges in
{y;a} | j € [n]} to E(H). For each i € [k]\ {1}, we add all the edges in {y;-*le | j € [n]} to
E(H).

Recall that ¢ is the lexicographic ordering of elements in {(i,j) | i,5 € [k],¢ < j}.
Consider r € [(];)]7 and let (i,7) = ¢(r). Note that ¢,5 € [k] and ¢ < j. We add an edge £,§,
(placed before the rectangle &;;), and add the vertex &, to X and §, to Y. Next, we describe

the connection between various edge selection gadgets. For r € [(g)], we add all the edges
in {gjw;(l)r(z) | j € [mrayr(2)]} to E(H). For each r € [(g)} \ {1}, we add all the edges in
{y; 7'V %, 1 G € Iy} to B(H).
k k

We add a new vertex ¢t to V(H), and make it adjacent to every vertex in {ylg?)(l)(z)@) |

Le [mpr M o]} in H. Also, we set s = z7. This completes the description of G/, XY, s, t.
HoEHe i

We postpone the description of k’, and proceed to prove some structural lemmata which will
be useful in determining the appropriate value of k’, as well as establishing the equivalence
of the instances (G, Vi, Va, ..., Vi) of MULTI-COLORED CLIQUE and (G', X,Y, z*,y*, k') of

CROSSING-MINIMIZING PATH.
» Observation 48. For any s —t (simple) path P* in G', the following properties hold.

L {aty; i€ R} u{a:g: | ie[(5)]} € BPY).
2. For each i € [k], there is a unique i* € [n] such that y}xl. xlyl. yl.al,, € E(P*). Here,
xi) = &1, when i =k.

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

3. Consider r € [(k)], and let @(i,j) = r. There is a unique €f; € [m;;] such that grxgl €
E(P), P(ee*) C P*, and ye* Zr41 € E(P*). Here, &,41 =t, when r = (g)

Moreover, each edge in E(P*) is present in one of the above items.

In the following, let P* be an s — ¢ (simple) path. We define the following integers that
satisfy the conditions of Observation 48. For ¢ € [k], we let i* € [n] be the integer given by
item 2 of Observation 48. Similarly, for each i,j € [k], where i < j, we let £}; € [m;;] to be
the integer given by item 3 of Observation 48.

In the following, we prove some properties of the path P*.

» Lemma 49. Fori 6~[k] the number of edges in P* that cross the edge x}y; is exactly
20— 1)(k—i+1)+2("3").

Proof. Consider i € [k]. By construction, the only edges that can potentially cross xy:, are
edges in paths P(eéj), where 7,7 € [k], i < j and £ € [m;;]. Consider i,j € [k], where i < j,
and let 7 = (i, j). From Observation 48 (item 3), we know that £;; € [m;;] is the unique
integer such that th” € E(P*), P(ezj*) C P*, and yzl Z141 € E(P*). Here, $441 = y*, if
t= () From the above discussion, there can be no ¢ 7é ¢7; such that an edge in the path

P(eé) crosses the edge z7y;. Moreover, some edges in P(eﬁ_) can potentially cross the edge
ij

x*yi“ In the following, we consider cases based on where ¢ lies in the linear ordering to count

the number of edges in P(e[*) that cross the edge x3y;.

e i < i < j. By construction the only edges in P(egj) that cross z7y>, are y[Ti7er]
z[H;, ee* | and z[H;, ezi]yz% (see Figure 16 for reference). Therefore, in this case there
are two edges in P(ez*) thaJt Cross Tiy;.
e i < i< j. In this case, by our construction, no edge in P(eg’_) crosses T3 y:.
o i< j<i. By construction the only edges in P(egj) that choss ziy;, are z[H;, e%]yzi
and y[Tj, ej’ e]m (see Figure 16 for reference). Therefore, in this case there are two edges

*, %
in P(ee*) that cross z7y:.

Hence, the number of edges in P* that cross the edge x3y7 is 2(1—1)(k—i+1) —I—Q(Zgl). <

» Lemma 50. For 7 € [(g)], the number of edges in P* that cross the edge T3z s exactly
2((5) =7 +1).

Proof. Consider 7 € [()] By construction, the only edges that can potentially cross Z7§z,
are edges in paths P(e}’), where 4,5 € [k], i < j and £ € [m;;]. Consider i,j € [k], where
i < j,and let r = (i,).

From Observation 48 (item 3), we know that ;; € [m;;] is the unique integer such that
gjﬂc%a € E(P*), P(e[*) C P*, and ye* Zry1 € E(P*). Here, 8,41 =t,ifr = (’2“) From the

above discussion, there can be no £ ;é £7; such that an edge in the path P(ezj) crosses the

edge 77 in P*. Moreover, some edges in P(eg_) can potentially cross the edge 797 in P*.

In the following, we consider cases based on where 7 lies in the linear ordering to count the
number of edges in P(ej.) that cross the edge z%yz.
b

e r < 7. By construction, there is no edge in P(e%j) that crosses the edge Z79s.

23:45

CVIT 2016

23:46

1700

1701

1702

1703

1704

1705
1706
1707

1708
1709

1710
1711

1712

1713
1714
1715

1716

1717

1718

1719

1720

1721
1722
1723

1724
1725
1726

1727

1728
1729

1730

1731

Connecting the Dots (with Minimum Crossings)

e r > 7. In this case, by construction there are two edges namely, x[Hhe%]y% and
i1 7

y[Ty, ee*]xi* (see Figure 16 for reference) that cross the edge Z79.

Hence, the number of edges in P* that cross the edge 27§ is 2((’;) —7F+1). <

» Lemma 51. Consider r € [(’;)], and let p(i,j) = r. Then the number of edges in P* that
cross the edge §rx}’ is exactly 2((';) —r)+1.
ij

Proof. Counsider r € [(k)], and let ¢(i,7) = r. By construction, the only edges that can
potentially cross g, :ce* are edges in paths P(e,”), where ¢, 5" € [k], ¢/ < j' and £ € [myj].
Consider i, j' € [k], where i < j', and let ' = (i, j'). From /Qbservation 48 (1t,e,m 3), we
know that £}, € [mi;] is the unique integer such that ﬁr’xzzj,j, € BE(P*), P(ezgj/) C P*,
and yé/:j;/.fr/+1 € E(P*). Here, &,.41 =t,if ' = (]2“) Thus there is no ¢ # £}, such that an
edge in the path P(ez,j,) crosses the edge ?QTJCZ in P*. Moreover, some edges in P(eé;fi,) can
potentially cross the edge grxjf; in P*. In thejfollowing, we consider cases based on zvs;here T

lies in the linear ordering to count the number of edges in P(e[*) that cross the edge yrmé* .

e 7/ < r. By construction, there is no edge in P(eé*j) that crosses the edge Qmé{ .
i/j/
e 7/ > r. In this case, by construction there are two edges namely, z:[H;/ ee* }yéﬁ and
i/j/

y[Ty, e?j/ |z, (see Figure 16 for reference) that cross the edge g},.xe* .
g il j! ij

e 7/ =r. The only edge that crosses the grx;i is z[H;, ezj]yzj
5 HERE

Hence, the number of edges in P* that cross the edge gj,x}j is 2((];) —r+1)—-1=
2((5) —r)+ 1. <

» Lemma 52. Consider r € [()] and let ©(i,7) = r. Then the number of edges in P* that

cross the edge xrﬂy[* is exactly 2(() —r). Here, &,41 = y*, when r = (g)

Proof. Consider r € [()], and let ©(i,j) = r. By construction, the only edges that can
potentially cross ,41y,. , are edges in paths P(re /) where i, j € [k], ' < j" and £ € [m ;]
Consider ¢/, 5’ € [k], where i < j', and let r = (i, 7). From Observation 48 there is no
¢ # 7, such that an edge in the path P(ee) crosses the edge xrﬂye* in P*. Moreover,

some edges in P(ep*) can potentially cross acrﬂye* in P*. In the following, we consider
“il §! ij
cases based on where r lies in the linear ordering to count the number of edges in P(e;?)
il j7

that cross the edge 3?,'7’+1y2'z_.
ij

- g
e ' < r. By construction, there is no edge in P(e,) that crosses the edge 2,11y, .
i’ 5’ ij
o v
e ' > r. In this case, by construction there are two edges namely, «[H;,e;? ly,7 and
Z/j/ i/j/

ylTy, PZ*./]xz'j' (see Figure 16 for reference) that cross the edge £T+1yzz .
j i’ 5’ ij

Hence, the number of edges in P* that cross the edge ﬂAcHlyg is 2((15) —r). |

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

; o B £y
d]
- Y '
Y [Fe e wi [Fy e
; o B Fy
[H;, ¢ (B, "
T rl
T
2
g
o - i
Y, [F2, "] U[Fd 5 €
H, Toh
x[H;, e*] o
—
Yi i ylFe, e he w(Ey e

Figure 17 Counting number of edges crossing.

» Lemma 53. Consider i,i',j € [k] such that i’ < j'. Let vf;vg) = e?*j/ = e*. Also, let
. i'5’ . .

0 ={e|ee€ E(P(e*) and e crosses yfzL }|+|{e | e € E(P(e*)) and e crosses zL.yL. }|+|{e |

e € E(P(e*)) and e crosses yl.aj,,}|. Here, x},y = & if i = k. Then the following

conditions hold.

1. Consider the case when i & {i',j'}. If i <i' then 6 =0, and otherwise 6 = 2.
2. Consider the case when i =1'. If c = i* then 0 = 6, otherwise, 6 = 8.
3. Consider the case when i = j'. If d = t* then 6 = 6, otherwise, § = 8.

Proof. Item 1 follows from the construction. We only consider the case when ¢ = i’. The
case when ¢ = j' follows from a similar a argument. Next, we consider the following cases
based relation between ¢ and i* (see Figure 17).

e ¢ =4*. In this case, by the construction, edges in P(e*) which cross:
= yial. are z[H;, e*]y[F, e*] and x[Hi,e*]ygl_l;
= byl are y[F}, e*]z[BE, e*] and x[Hi,e*]yg/,
- yhay,y are z[Bl e*]y[T;, e*] and x[H,»,e*}yé:/.
Hence, 6 = 6.]
e ¢ < i*. In this case, by the construction, edges in P(e*) which cross:
= yial are z[H;, e*y[FE, e*], ac[Hi,e*]ygf’, y[FE, e*)z[BE, e*], and x[B, e*] y[T;, e*];
- byt are x[B:, e*]y[T;, e*] and a;[Hi,ei]yZ?/;
- yhay, are z[Bl e*]y[T;, e*] and x[H,»,e*}yé?/.
Hence, 6 = 8.]
e ¢ > i*. In this case, by the construction, edges in P(e*) which cross:

23:47

CVIT 2016

23:48

1764

1754
1755
1756

1757
1758

1759

1760

1761

1762

1763

1765

1766

1767

1768

1769

1770

1771

1772
1773
1774

1775

1776

Connecting the Dots (with Minimum Crossings)

H; F! B! T; H F B) T, Hy 7 B T, . .
2[H;. e3]a[H,, 3] 2(BL e})2(BL 3] 2[H;,ci] 2[B). e3 W[H .5 2[B! e il il
| [L —o v
—_ ||
7 | —
N A ¥ LA
= == s \| L]
L1 i |l
Yl ei] yIF, €3] (T3, eily[T3, e3) ylFy. ei ylTj. €3] ylF? . e; [Ty, e3) v, vl
a)c=u
, 1, £ B? T Hy F Bl T . ;
ol ei)alHy 3] | o[H.] (B}, 1] | r[B7 3 [~
/
— 1/
—] i 1
N e . w e e
ylFy il y(Ti, 3] Yl e uiTy el yi o
b)c<w
; F B: T H, Fj B T, Hy F B T .
wlH;, €] [H,, e3) [2[BL, 5] z[H,, e z(BJ, ei] e[Hy, ey (B, e} /:,’7, it
R L
] 4& | /\
= A L] A
L =] |
« o ‘o o e
y[Fy.c y(Ti, eil [T, €3] ylFy el y(Ti 3] ylF . eh vl el gy

c¢)e>w

Figure 18 Counting number of edges crossing.

= yial. are x[H;, e*]y[F, e*] and m[Hi,e*]yzZ/ ;
ij!

ij’
ox
ij!

= iyl are z[H;, e*ly[FY, e*] and z[H;, e*]y
- yiat,, are z[H;, e ly[F, e”], x[H“e*]yzZ,,,v y[F?, e*|x[BE, e*] and x[Bi, e*] y[T;, e*].
Hence, 6 = 8. ”

<

In the lemmata that we proved till_now, the onlylgair of edges whose crossing have not
been considered belong to paths P(e;l) C P*, P(e,]) C P*, where i,7',j,7 € [k], i < j
ij il §!

and i < j'. In the following proposition and lemmata, we count such pairs of crossing edges.

> Proppsition 54. Consideri,j € [k] withi < j. Then the number of pairwise edge crossings
in Plej) is 7.
ij

» Lemma 55. Consider i, j,j € [k], such thati < j < j'. Let ef,;],;_ = vivi and efg' = vivf’
ij ij’

and w = |{(e,€’) | e € P(e%‘),e’ € P(e%l_/) and e crosses €'}|. Ezactly one of the following

conditions hold. ’

1. If c<w then w = 24;

2. otherwise, w = 26.

Proof. Let e] = e% and ej = ez{/ . Since j < j', therefore, all slots in T; lie strictly to
i ij’

the left of slots in T},. Therefore, the vertex x[H;, ej] lies strictly to the left of x[H;, e3].

Similarly, y[T;, ef] lies strictly to the left of y[T;, e3]. This implies that x[H;, e’ﬂy% crosses
ij

every edge in E(P(e3))\ {z[H;, eg]yi?/} and does not cross the edge x[H;, eé]yzf/. Therefore,
x[H;, e’{]yzi_ crosses 8 edges in E(P(e})) (see Figure 18). Similarly, the edge z[H;, eg]yézl
7 i

crosses every edge in E(P(e})) \ {z[H;, et|y[FL, e3], z[H, e’ﬂyzjv}7 does not cross the edges

*
ij

x[H;, ei]y[Fi, el] and z[H;, e}‘]yzz_, and therefore, it crosses 7 edges in E(P(e})).
ij

1794

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1795

1796

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

b)yi<i <j<j
Vi Vir vy v

c)i<i <j <j

Figure 19 Counting number of edges crossing.

Next, consider the subpaths P; of P(e}) between z. and y[Tj,e}] and Py of P(e})
]
between x%l and y[T;,e5]. By the construction of G’ and our assumption that j < j’,

{(e,e') | e € Pf e’ € P and e crosses €'}| is 6. Also, no edge in P; crosses an edge in
E(P(e})) \ (E(Pf) U {z[H;, eily,t)}, and no edge in Py crosses an edge in E(P(e3)) \

(E(Py)U {x[Hhe;]y%, ,z[B, e3ly[Ti, e3]}). By the ordering of vertices T;, we have that
ig’

23:49

y[Ti, ej]x[H;, e}] crosses the edge z[B, e3]y[T;, e3]. Moreover, no edge in E(P;)\{y[T}, e;]x[H;, €;]}

crosses an edge in E(P(e3)) \ (E(Py) U {z[H;, e3ly? }). Let P, = E(P;) U {x[H;,eily }
i’ ij
and P, = E(P§)U {:r[Hi,e§]y%:}. From the above we have that, [{(e,e') | e,¢ €

ij
Py U P, and e crosses €'} + |{(e,€¢/) | e € Py U Py, € (E(P(e3)) \ P1) U (E(P(e3)) \
Pz) and e crosses €'}| = 22. In the following we only need to count those crossing edge pairs
e, € such that e € E(P(e3)) \ P, and ¢’ € E(P(e})) \ P,. We consider the following cases

based on whether or not ¢ < w.

o ¢ < w. In this case, y[F}, e}] is to the left of y[F?,e3], and the number of desired type of
crossing edge pairs is 2.

e ¢ > w. In this case, y[F}, e}] is to the right of y[F},e5], and the number of desired type
of crossing edge pairs is 4.

This concludes the proof. <

» Lemma 56. Consider i,i',7,j € [k], wherei < j, i <j', andi <i'. Let el = 62;]_ = vivé
L

ey = 625]_/ = vivl’, and § = |{(e,€') | e € P(e}),e’ € P(es) and e crosses €'}|. Then the

wrz

CVIT 2016

23:50

1797

1798
1799

1800

1801
1802
1803
1804

1805

1806
1807
1808

1809
1810
1811

1812

1813
1814
1815
1816

1817

1818
1819

1820

1821

1822
1823
1824
1825

1826

1827

1829

1830

1831

1832
1833

1834

1835

1836

Connecting the Dots (with Minimum Crossings)

following holds.

1. Ifi<j<i <j, then § = 16.
2. Ifi<i’' <j<j, then § = 21.
3. Ifi </ < j' < j, then § = 24.

Proof. Observe first that the paths P(e}) and P(e3) have nine edges each. (See Figure 19.

The red path is P(e}) and the blue path P(e3).)

1. Suppose i < j < i’ < j'. Then, only two edges of P(e}) — w}l y[Tj,ei] and yzz x[H;, ef] -
cross P(e3). Edge xe* y[Tj, e7] crosses eight of the nine edges of P(e}) — all edges except
xz}f//y[T]«, €3]. Similarly, edge y[?jm[Hi, e3] crosses eight of the nine edges of P(e}) — all
edg]es except yz;{:x[Hi/, e3]. Thus, 6 =8+ 8 = 16.

2. Suppose i < ¢’ 1<]j < j'. Then six edges of P(e}) cross edges of P(e3).

e Edge xz* y[T}j,e;] crosses 3 edges of P(e3). Those three edges are y[T}, e3]x[BI | e3],
o{BY eslylFY e3) and y[FY e3), ol c3). | |

e Each of the three edges y[T}, ef|z[BY, €], z[BY, efly[F7, ef] and y/[}j'j, ef|z[Hj, ef] of
P(e}) crosses both the edges z[Hj:, e3],y[Ti, e3] and z[Hy, e3]y,? of P(e}), thus
resulting in 3 X 2 = 6 crossings. ﬂj/

e Edge z[H;, eiy[T;, 3] crosses 4 edges of P(e3). Those four edges are y[Ty, e3]x[BL, €3],
@B, e3ly[Fy, 5], y[Fy . e3]a[Hy, e3] and Jf[Hmez]yz;j,-

e Edge z[H;, e’{]y%‘ of P(e7) crosses eight of the nine edges — all except z[H, e§]y2;{/’/ -
of P(e3).) v

Thus, § =3+ 6 +4+8 = 21.

3. Suppose i < i’ < j' < j. Six edges of P(e}) cross edges of P(e3).

e Each of the four edges 51:21 y[Ty, et], ylT}, e’{]x[Bi, el z[Bé, eﬂy[Fj, e}] and y[Fg, eflz[H;, e
ij

of P(e}) crosses the two edges :rz;f/_/y[Tj/, e3] and z[Hp, yzlf/l] of P(e}), thus resulting
in 4 X 2 = § crossings. v o

e Edge x[H Ty[T;, ef] of P(ey) crosses eight of the nine edges of P(e}) — all edges
except xl,*) y[Tj, es5].

o z[H;, el]y“ of P(e7) crosses eight of the nine edges — all except z[H, eg]yz/j/ —of

ij il 5!

P(e3).

Thus, § = 8 + 8 + 8 = 24.

» Lemma 57. Consider i,j,j' € [k]|, where i < j < j'. Let ef = e%‘ = vivé, es = egf/ =

i 33’
vivl', and B = |{(e,¢') | e € P(et), e’ € P(e}) and e crosses €'}|. Ezactly one of the
following holds.

1. If d = w, then B = 18.
2. Ifd < w, then 8 = 18.
3. Ifd > w, then 8 = 20.

Proof. The paths P(e}) and P(e}) have nine edges each. (See Figure 20. Red path is P(e})
and Blue path P(e3}).)

1828

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1851

1852

1853

1854

1855

1856

1857

1858

1859

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

i 7 B 7 1, F B) ; Hy o BI' Ty | ,
ZH,, <] 2Bl il x[uj.c:]:z,-[f%ﬁ;] 2B, 721 B, €3] ey, e} 2B e} /ﬁ'ﬂi, ik
| I | [
? 7% ‘%s 7%3 74/\ %&' /
v E ;/: 7 N ;ngi:_
y[FY e} ylTh e} WIF3, e]ylF. e3] YT €ily(T;, e3) y[FY ey !/[TJ'-"E]T;;!
—u
i 7 B 7 1, F B) 1 , Ja Bl Ty ,
R e AR s
_xz Il B = A /
\/ \/ ;Z_gzi_é]
e Y% WPt UIT ey, c3) yIE 3 e A IR W
<w
i £ B 7 H 1 Hy F Bl Iy :
o[H,, e 2[BL. e w[Hj. e5]a[H, 5] w[H, e (B, ;) /L‘] ol
N N]
— | 1
N/ y !
e %) ol 1ol) Wl A IR

) d>w

Figure 20 Counting number of edges crossing.

1. Suppose d = w. Then four edges of P(e}) cross edges of P(e3).

23:51

e Edge xZ] y[T}, €3] crosses six of the nine edges of P(e}) — all edges except z[BL, e5]y[FJ, e3],

y[Fﬁ,, 6317 x[Hiv 6;] and .Z'%I y[Tj’7 6;}
i
o Edge y[T}, 6T]$[Bé, e3] crosses two edges of P(e3) — z[Bi, es|y[Fi, e3] and z[H;, e3)yl .
s

*

e z[B) e} 5

Jy[F3, 5] crosses two edges of P(e}) — y[Fi, e3], z[H;, e3] and x[H;, eﬁ]ygf/ .
i’
e Edge z[H;, e’{]yﬂ crosses eight of the nine edges of P(e}) —all edges except x[H;, e%]yﬁf .
© §i’

Thus, f=6+2+2+8=18.

2. Suppose d < w. This case is identical to the previous one and we have 5 = 18.

3. Suppose d > w. In this case, five edges of P(e}) cross edges of P(e}). Four of them are
exactly as in the case when d = w, thus resulting in 18 crossings. In addition, the edge
y[FJ, ej]z[Hi, ef] crosses two edges of P(e3) — x[Bl,, e5ly[Fy, e5] and y[Fi, e3]z[Hi, e}).
Thus, = 18 + 2 = 20.

<

.. . . o .
» Lemma 58. Consider i,i',j € [k], where i < i’ < j. Let e} = eZ%J = vlv), e = ezgj =
vivl, and o = |{(e,¢’) | e € P(et),e € P(e3) and e crosses €'}|. Ezactly one of the

following holds.

1. If d < z, then a = 20;

2. otherwise d > z a = 22.

Proof. By the construction and the assumption that ¢ < ¢/ < j, the edge x[Hi,eﬂygj
crosses every edge in E(P(e3)) \ {z[H;, e§]yz;;f»} and does not cross {z[H;, e?_;]yz;f_}. There-
fore, x[H;,eflyl. crosses 8 edges in Pj (Séej Figure 21). Let Ef = {x[Hi,:a%]y[Fci,e’{],
y[Fj,e’{]ac[B@e’f]l:x[Bge’f]y[Ti,e’{]}. None of the edges in Ef crosses an edge in Py. The

CVIT 2016

23:52

1850

1860

1861
1862
1863
1864

1865

1866
1867

1868

1869
1870
1871
1872

1873

1874

1875

1876

1900

1901

1902
1903
1904
1905
1906

1907

Connecting the Dots (with Minimum Crossings)

; F B! T, Hy o B! T H, £ B] T,)
x[H;, e} x[BL.ej]] w[Hy, e (B, €3 w[Hj,ei]z[H;, e3] [2[BZ, e7][BI, 3] 1:',{.’ ,,;:’/’
NG i e e 1 N % 7

A I N
\/ V7 y ‘%éé»%é
g [f—% ——e
ylF ef] yl[Tise) y[Fy.e5 yl[Tir, e3) WIF]. ei] y[F?, e5) (T eily(Ty. ezl |yl i
a)d=z
, oA B! T s o B T, H, £ B) Fl B]] ; ,
alHy e; [Bl ef] [Hy 5 2B, e} ;. el Hj, e3] (B, ¢i] t[B, c3] o, j&3
Y \‘7%>\~§,:;§»7<\ é ; / N 7
N T N o ———
\/ \/ V y 7‘\‘ Zsz%ﬁ\.
uIFL e yThe) olFY e yl1¥.e; ulF. el plrza) L WDellTocl gy
b)d<z
H; F B T Hy F B Ty H, Fi Bj, Fi B T;

f ,
c[Hj, eilx[H;, €3] [e[B1, 3] (B, €] g ;]

SN SN
Ty TS)

ML I N Vil i
ylFL ei) Yl e ylFy 3] ylTy, 3] y(F!.c3) lFy. el

c)d>z

Figure 21 Counting number of edges crossing.

edge m[Hil,eE],yz;{‘ crosses each edge in E(Py) \ (Ef U {x[Hi,e{]yg 1), and gives is 5 ad-
ditional pairwisclérossings. The edge y[T;, e, x[Hj,ef]] € E(Pl*)]crosscs each edge in
{x[Hy, esly[FL e3),y[FL , es)x[BL €5, z[BL es)y[Ti, €3]}, giving 3 more crossing edge pairs.
By ordering of vertices in H;, we have that the edge y[Ti,e5]xz[H;, €3] crosses the edge
z[Hj, eily[F), e}], giving one additional crossing edge pair. Next, we consider cases based on
whether or not d < z.

e d < z. By ordering of vertices in H;, we have 3 additional crossing edges, namely,
{@[H;, e3]y[FY, €3], y[Fy, ei]x[By, eil}, {=[By, e1ly[Ty, ei], y[FY, e5]a[BL, €3]}, and
{y[T3, e*ﬂx%j ,x[B2,e5]y[T;,e5]}. Hence, the total number of crossing edge pairs is 20.

e d > z. This together with the ordering of vertices in H; gives 5 additional crossing edge
pairs as follows. The edge z[H;, ef]y[F?, e;] crosses each of the edges z[H;, e3]y[F7, e3],
y[F?, e3]x[BL,e3], and the edge z[B,e3]y[T},e3] crosses each of the edges y[Fj,e’{]
:E[be eil, x[Bg, erlylT;, er], v}, e’f]mff;;j. Hence, the total number of crossing edge pairs
is 22.

<

In the following table (Figure 22), we set the value of &’ using Lemma 49 to 58. Note
that k' = O(k*).

» Lemma 59. (G, Vi, Vs, ..., Vi) is a yes-instance of MULTI-COLORED CLIQUE if and
only if (G',X,Y,s,t, k') is a yes-instance of CROSSING-MINIMIZING PATH.

Proof. Suppose that (G, Vi, Va, ..., Vi) is a yes-instance of MULTI-COLORED CLIQUE, and
let H be a clique in G that contains exactly one vertex from each V;. Then, for each i € [k],
H contains a unique vertex vi. € V; (“the selected vertex”), and for every i,j € [k],i < j, H
contains the edge vi. v;:* (“the selected edge”). The required an (s, t)-path in G’ starts at s
and traverses along the gadgets corresponding to each of the selected vertices and edges, and
finally ends at t.

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

Crossing with edge(s) | Contribution to the sum (k' =) ") Lemma

(=7, 97) Diew 26 =Dk —i+ 1)+ 2(",") Lemma 49
(Z4,0:) Zz‘e[(’g)] 2((’;) —i+1) Lemma 50
(9r, acZ*J) Zre[(’;)] 2((1;) —r)+1 Lemma 51

Here, ©(i,5) =r
(yza yErg1) Zre[(’;)] 2((;) —r) Lemma 52

Here, ¢(i,5) =r
Path (yi', @i, yix, xi41) e 2(%5) +6(k = 1) Lemma 53

gij With (‘:ij

7(3)

Proposition 54

1<)
Eij with &;jrs Zi,je[k],i<]‘ 24(k — 7) Lemma 55
i<j<y
Eij with & s Zi,je[k],i<j 16(’“?) Lemma 56
i<j<i <y (item 1)
Eij with & jrs Zi,je[k],i<j 21(5 —i—1)(k —j) Lemma 56
i<i'<j<j (item 2)
Eij with & s Zi,je[k],i<j 24(j_;_1) Lemma 56
i<i<j <j (item 3)
Eij with &8 Zi,je[k],i<j 18(k — 7) Lemma 57
i<j<j'
Eij with ;s Zi,je[k],i<j 205 —1—1) Lemma 58
i<i' <j

Figure 22 Setting value of k’.

To see the reverse direction, suppose that (G', X,Y, s,t, k') is a yes-instance of CROSSING-
MINIMIZING PATH, and let P* be an (s,t) — path in G’ with at most k" crossings. Then, by
Observation 48, P* contains the following.

L {afy; i€ YU {d |i e [(5)]} € BPY).

2. For each i € [k], there is a unique ¢* € [n] such that y/zl., zl.yl., yl.a}, | € E(P*). Here,
T}, = &1, when i = k.

3. Consider r € [(’;)]7 and let ¢(i,5) = r. There is a unique £;; € [m;;] such that Qrw% €

E(P*), P(e%j) C P*, and yz;j,.frwrl € E(P*). Here, #,41 =t, when r = (g)
That is, P* can be thought of as selecting one vertex from each V; and one edge between every
pair V; and Vj;, where i < j. We claim that the required clique in G is the subgraph of G
induced on {vf* |ie [k]} In order to see that this graph is indeed a clique, consider i, j € [k],
where i < j. We shall show that v and Ug* are adjacent in G. We have P(ej) C P*.

.. . . ij
Suppose €2 = (v%,v’). Then, because of our choice of k¥’ and parts 2 and 3 of Lemma 53, it
ij g . ;
must be the case that ¢ =i* and d = j*. That is, e;. is the edge between v}. and vj.. This
ij

completes the proof. <

» Theorem 60. CROSSING-MINIMIZING PATH is both NP-hard and W[1]-hard when para-
meterized by the number of crossings.

23:53

CVIT 2016

23:54

1925

1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

1972

Connecting the Dots (with Minimum Crossings)

—— References

1

10

11

12

13

14

15

16

17

18

Swapping labeled tokens on graphs. Theoretical Computer Science, 586:81 — 94, 2015. Fun
with Algorithms.

A. Karim Abu-Affash, Ahmad Biniaz, Paz Carmi, Anil Maheshwari, and Michiel H. M.
Smid. Approximating the bottleneck plane perfect matching of a point set. Comput.
Geom., 48(9):718-731, 2015.

A. Karim Abu-Affash, Paz Carmi, Matthew J. Katz, and Yohai Trabelsi. Bottleneck non-
crossing matching in the plane. Comput. Geom., 47(3):447-457, 2014.

Jihad Al-Oudatallah, Fariz Abboud, Mazen Khoury, and Hassan Ibrahim. Overlapping
signal separation method using superresolution technique based on experimental echo shape.
Advances in Acoustics and Vibration, pages 1-9, 2017.

Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting crossing-
free structures. In Symposuim on Computational Geometry 2012, SoCG ’12, Chapel Hill,
NC, USA, June 17-20, 2012, pages 61-68, 2012.

Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Noéllenburg. Algorithms
for multi-criteria one-sided boundary labeling. In Graph Drawing, 15th International Sym-
posium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, pages 243—
254, 2007.

Therese C. Biedl, Franz-Josef Brandenburg, and Xiaotie Deng. Crossings and permutations.
In Proceeding of the 13th International Symposium on Graph Drawing, GD, volume 3843
of Lecture Notes in Computer Science, pages 1-12. Springer, 2005.

Edouard Bonnet, Tillmann Miltzow, and Pawel Rzazewski. Complexity of token swapping
and its variants. Algorithmica, Oct 2017.

Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. STAM J. Comput., 42(5):1803-1829, 2013.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Proceedings of the 4th International Workshop on Parameter-
ized and Ezxact Computation, IWPEC, volume 5917 of Lecture Notes in Computer Science,
pages 75-85. Springer, 2009.

John Gunnar Carlsson, Benjamin Armbruster, Saladi Rahul, and Haritha Bellam. A bot-
tleneck matching problem with edge-crossing constraints. Int. J. Comput. Geometry Appl.,
25(4):245-262, 2015.

Xuanwu Chen and Ming S. Lee. A case study on multi-lane roundabouts under congestion:
Comparing software capacity and delay estimates with field data. Journal of Traffic and
Transportation Engineering (English Edition), 3(2):154-165, 2016.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Algorithms
for drawing graphs: an annotated bibliography. Computational Geometry, 4(5):235-282,
1994.

Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew Kitching, Giuseppe Li-
otta, Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond,

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, M. Zehavi

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Matthew Suderman, Sue Whitesides, and David R. Wood. On the parameterized complex-
ity of layered graph drawing. In Algorithms - ESA 2001, 9th Annual European Symposium,
Aarhus, Denmark, August 28-81, 2001, Proceedings, pages 488—499, 2001.

Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoretical Computer
Science, 131(2):361 — 374, 1994.

Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379-403, 1994.

Jack Edmonds. Paths, trees and flowers. Canadian Journal OF Mathematics, pages 449—
467, 1965.

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theoretical computer
science, 410(1):53-61, 2009.

Per Garder. Pedestrian safety at traffic signals: A study carried out with the help of a
traffic conflicts technique. Accident Analysis & Prevention, 21(5):435-444, 1989.

M R Garey and D S Johnson. Computers and intractability: a guide to the theory of
NP-completeness. W.H. Freeman, New York, 1979.

Michael R Garey and David S Johnson. Crossing number is np-complete. SIAM Journal
on Algebraic Discrete Methods, 4(3):312-316, 1983.

Martin Grohe. Computing crossing numbers in quadratic time. In Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 231-236, 2001.

Magntus M. Halldérsson, Christian Knauer, Andreas Spillner, and Takeshi Tokuyama.
Fixed-parameter tractability for non-crossing spanning trees. In Algorithms and Data
Structures, 10th International Workshop, WADS 2007, Halifax, Canada, August 15-17,
2007, Proceedings, pages 410-421, 2007.

Godfrey H Hardy and Srinivasa Ramanujan. Asymptotic formulag in combinatory analysis.
Proceedings of the London Mathematical Society, 2(1):75-115, 1918.

Petr Hlineny. Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455—
471, 2006.

Petr Hlineny and Marek Dernar. Crossing number is hard for kernelization. In 32nd Inter-
national Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston,
MA, USA, pages 42:1-42:10, 2016.

John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation
[H] (algorithm 447). Commun. ACM, 16(6):372-378, 1973.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sei., 62(2):367-375, 2001. URL: http://dx.doi.org/10.1006/jcss.2000.1727, doi: 10.
1006/ jcss.2000.1727.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: http://dx.
doi.org/10.1006/jcss.2001.1774, doi:10.1006/jcss.2001.1774.

Klaus Jansen and Gerhard J. Woeginger. The complexity of detecting crossingfree config-
urations in the plane. BIT, 33(4):580-595, 1993.

Michael Junger and Petra Mutzel. Graph Drawing Software. Springer-Verlag, Berlin, Heidel-
berg, 2003.

Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 382-390, 2007.

Fabian Klute and Martin No6llenburg. Minimizing crossings in constrained two-sided circular
graph layouts. In 84th International Symposium on Computational Geometry, SoCG 2018,
June 11-14, 2018, Budapest, Hungary, pages 53:1-53:14, 2018.

23:55

CVIT 2016

23:56

2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

2069

Connecting the Dots (with Minimum Crossings)

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

Jan Kratochvil, Anna Lubiw, and Jaroslav Nesetfil. Noncrossing subgraphs in topological
layouts. SIAM J. Discret. Math., 4(2):223-244, March 1991.

Mukkai S Krishnamoorthy and Narsingh Deo. Node-deletion np-complete problems. STAM
Journal on Computing, 8(4):619-625, 1979.

Martin I Krzywinski, Jacqueline E Schein, Inanc Birol, Joseph Connors, Randy Gascoyne,
Doug Horsman, Steven J Jones, and Marco A Marra. Circos: An information aesthetic for
comparative genomics. Genome Research, 19(9):1639-1645, 2009.

J. Malik, J. Weber, Q. T. Luong, and D. Roller. Smart cars and smart roads. In Proceedings
6th. British Machine Vision Conference, pages 367-381, 1995.

Déaniel Marx and Tillmann Miltzow. Peeling and nibbling the cactus: Subexponential-
time algorithms for counting triangulations and related problems. In 32nd International
Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA,
pages 52:1-52:16, 2016.

Tillmann Miltzow. Subset token swapping on a path and bipartite min-
imum crossing matchings. In Order and Geometry Workshop, Problem booklet.
http://orderandgeometry2016.tcs.uj.edu.pl/docs/OG2016-ProblemBooklet.pdf., pages 5-6,
2016.

Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Giinter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and hardness of token swapping. In 24th Annual Furopean
Symposium on Algorithms, ESA 2016, pages 66:1-66:15, 2016.

Haiko Miiller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics,
156(1-3):291-298, 1996.

C St JA Nash-Williams. Hamiltonian circuits in graphs and digraphs. In The many facets
of graph theory, pages 237-243, 1969.

Monroe M. Newborn and William O. J. Moser. Optimal crossing-free hamiltonian circuit
drawings of kp. J. Comb. Theory, Ser. B, 29(1):13-26, 1980.

Michael Osigbemeh, Michael Onuu, and Olumuyiwa Asaolu. Design and development of
an improved traffic light control system using hybrid lighting system. Journal of Traffic
and Transportation Engineering (English Edition), 4(1):88-95, 2017. Special Issue: Driver
Behavior, Highway Capacity and Transportation Resilience.

Marcus Schaefer. The graph crossing number and its variants: A survey. The Electronic
Journal of Combinatorics, 20, 04 2013.

Carl Sechen. VLSI placement and global routing using simulated annealing, volume 54.
Springer Science & Business Media, 2012.

Micha Sharir and Emo Welzl. On the number of crossing-free matchings, cycles, and
partitions. STAM J. Comput., 36(3):695-720, 2006.

Paul Turdn. A note of welcome. Journal of Graph Theory, 1(1):7-9, 1997.

Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. JoCG,
8(1):47-77, 2017.

Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi,
Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping
labeled tokens on graphs. In Alfredo Ferro, Fabrizio Luccio, and Peter Widmayer, editors,
Fun with Algorithms, pages 364-375, 2014.

Lanbo Zheng and Christoph Buchheim. A new exact algorithm for the two-sided crossing
minimization problem. In Proceedings of the First International Conference on Combinat-
orial Optimization and Applications, COCOA, volume 4616 of Lecture Notes in Computer
Science, pages 301-310. Springer, 2007.

