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Introduction

Combinatorial structures play a fundamental role to design, understand and analyze
algorithms and their complexity. They are very often used as:

• data structures, to reduce the running time of an algorithm,

• tools to prove lower bounds for the computational complexity of considered
problems,

• universal structures encoding possible local behavior for graphs with prescribed
properties,

and in many, many other situations. Our choice above is obviously not representative
of all the applications of combinatorial structures in computer science, but the results
presented in this thesis fall into these three categories.

In Chapter 1, we introduce a new data structure for the problem of inverting permu-
tations in-place. The best known deterministic algorithm for such in-place inversion
is relatively simple and runs in O(n2) time. The application of our structure allows to
reduce the running time to O

(
n3/2

)
.

The main result of Chapter 2 is an algorithm for extending visibility representations
of planar graphs. The time complexity of the initial version of our algorithm is O(n2)
due to the need to solve 2-SAT instances of that size. To improve the running time, we
develop a data structure based on a set of persistent AVL trees. The combination of
our data structure and dominance drawings of planar graphs allows us to significantly
reduce the size of the 2-SAT formulas and consequently speed up the algorithm to
O
(
n log2 n

)
.

Chapter 3 retains a bit of the graph drawing flavor of Chapter 2, as we discuss find-
ing a perfect matching in a bipartite graph (already drawn in the plane) that minimizes
the number of crossing edges. We use some new combinatorial structures to prove the
NP-hardness of this problem.

Finally, Chapter 4 is devoted to the problem of finding smallest possible univer-
sal targets for homomorphisms of edge-colored graphs. These universal targets, for
a given class of graphs, have combinatorial properties that allow to elegantly capture
every local behavior possible in all the graphs from the class. Our line of research was
motivated by the work of Alon and Marshall [3], and started with the paper [47]. In
Chapter 4 we develop new combinatorial tools that allow us to construct asymptoti-
cally optimal universal targets for rational graph classes.
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Preliminaries

All results of this dissertation are set in the context of graph theory. For definitions of
standard graph-theoretical concepts, we refer the reader to [30]. We also use certain
specific notions and notational conventions listed below.

Set notation. For every positive integer k, the set {1, . . . , k} is denoted by [k].
Graphs. We consider undirected and directed graphs. In both cases, we use the no-

tation G = (V (G), E(G)), where V (G) is the finite nonempty vertex set, and E(G) the
edge set of a graph G. If we do not specify whether a graph is directed or not, we mean
an undirected graph. Directed graphs are sometimes called digraphs. Both undirected
and directed graphs are assumed to be simple, i.e. to have no loops and no multiple
edges. Sporadically we make an exception to this rule, and then we explicitly let the
reader know that this is the case.

Notation for edges. An undirected edge between vertices u and v is written as
{u, v}, whereas a directed edge from u to v is written as (u, v).

Degree of a vertex. For a vertex v of an undirected graph G, the number degG(v) is
its degree. For a vertex v of a directed graph G, we use degin

G(v) and degout
G (v) instead, to

denote the indegree and outdegree of v, respectively. The subscript G may be dropped if
the graph is clear from the context.

Subgraphs. For two graphs G′ and G, directed or not, we say that G′ is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If additionally E(G′) = E(G) when restricted
to vertices in V (G′), we say that G′ is an induced subgraph of G.

Distance between vertices. The distance from vertex u to vertex v is the number of
edges in the shortest path from u to v. The distance from a vertex u to a subgraph G′ of
a graph G is the smallest distance from u to a vertex of G′.

Graph orientations. An oriented graph ~G is a directed graph such that for any pair
of vertices u, v ∈ V (~G) either (u, v) /∈ E(~G) or (v, u) /∈ E(~G). An orientation ~G of a graph
G is an oriented graph obtained by assigning a direction to each edge of G. Such an
orientation is called a d-orientation if every vertex of ~G has indegree at most d.

Graph classes. By a class of graphs we mean a nonempty set of graphs closed under
isomorphisms.

Pseudocode conventions. In algorithm listings, we model our notation after [22].
In particular, we use “=” for assignment and “==” for equality testing.
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1
An in-place, subquadratic algorithm
for permutation inversion

In the permutation inversion problem, the algorithm is given a positive integer n and
a permutation π of the set V = {1, ..., n} presented in an array t, where t[i] = π(i) for
all i ∈ V . The goal is to perform a sequence of modifications of t, so that eventually
t[i] = π−1(i) for all i ∈ V . In this chapter we focus on algorithms that use O(log n)
bits of additional memory. Algorithms with this tiny bound on additional memory are
called in-place algorithms. The best known in-place deterministic algorithm for the
permutation inversion problem runs in O(n2). By applying a new data structure, we
reduce the running time to O

(
n3/2

)
.

1.1 Previous work

The in-place permutation inversion problem was considered in Knuth [57], where two
solutions are described, by Huang and by Boothroyd. These algorithms, however, are
allowed to store any value from the range [−n, ..., n] in the array t. This seems to bypass
the heart of the problem. In fact, the signs of the values in t can be used as a vector
of n bits. The problem is trivial when such a vector is allowed. Algorithms described
in this chapter are allowed to store values only from the range [1, ..., n] in t (which may
lead to t temporarily not representing a permutation).

First, we describe an O(n2) time in-place algorithm. Observe that it is straightfor-
ward to reverse a single cycle of π:

Listing 1.1 Pseudocode for reversing a cycle

REVERSE-CYCLE(start)

1 cur = t[start ]
2 prev = start
3 while cur 6= start
4 next = t[cur ]
5 t[cur ] = prev
6 prev = cur
7 cur = next
8 t[start ] = prev

7



8 An in-place, subquadratic algorithm for permutation inversion

For a cycle in the permutation, let its leader be the smallest element in this cycle. The
following code finds in O(n) time the leader of the cycle (containing a given element
start):

Listing 1.2 Pseudocode for finding the leader of a cycle

CYCLE-LEADER(start)

1 cur = t[start ]
2 smallest = start
3 while cur 6= start
4 smallest = min(smallest , cur)
5 cur = t[cur ]
6 return smallest

To obtain the inverse of π, it suffices to reverse each of the cycles exactly once:

Listing 1.3 A quadratic in-place algorithm for permutation inversion

1 for i = 1 to n
2 if CYCLE-LEADER(i) == i
3 REVERSE-CYCLE(i)

In 1995, Fich, Munro and Poblete [35] published a paper on a similar topic: the
permutation π is given by means of an oracle and the goal is to permute the contents
of an array according to π. They provided an algorithm with running time O

(
n log2 n

)
that uses O

(
log2 n

)
bits of additional memory. The concept of a cycle leader comes

from this paper.
In 2015, the methods of [35] were extended to the permutation inversion problem

by El-Zein, Munro and Robertson [33, 70], who gave an algorithm with running time
O(n log n) that uses O

(
log2 n

)
bits of additional memory.

It is interesting to note that the quadratic algorithm can be easily modified to achieve
O(n log n) expected running time. In [35], the authors point out, attributing the idea to
a personal communication with Impagliazzo, that one can use a randomly chosen hash
function h and choose the cycle leader to be the element i with the smallest value h(i).
This idea can be applied to cycle inversion as well. When visiting element i in the
main loop, we start reversing its cycle and either complete this operation or encounter
an element j such that h(j) < h(i), in which case we revert the operation. This way,
assuming no hash collisions, every cycle is reversed once and if h is chosen randomly,
the average time spent in the main loop at any single element is O(log n). Thus, we
obtain an in-place algorithm with expected running time O(n log n).

To our knowledge, we present the first subquadratic deterministic in-place algo-
rithm. We compare it with previously known algorithms in Table 1.1. The description
of our algorithm is contained in [46] as well as in this chapter. The running time of this
algorithm is O

(
n3/2

)
. Such time reduction is possible due to an alternative representa-

tion of permutation cycles.
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(
n3/2

)
algorithm 9

time complexity required bits of additional memory source

O(n) O(log n) with t[i] ∈ [−n, ..., n] Huang [57]

O(n) O(log n) with t[i] ∈ [−n, ..., n] Boothroyd [57]

O
(
n2
)

O(log n) folklore (Listing 1.3)

O(n log n) O
(
log2 n

)
El-Zein, Munro, Robertson [33, 70]

O(n log n) in expectation O(log n) Impagliazzo [35]

O
(
n3/2

)
O(log n) this thesis (Listing 1.9)

Table 1.1: A summary of permutation inversion algorithms.

1.2 A summary of the O
(
n3/2

)
algorithm

Observe that the quadratic algorithm runs in time O
(
n3/2

)
on any instance in which

each cycle is of size at most O(
√
n). The complexity is worse when a large proportion

of the elements belong to cycles of greater sizes. We modify the quadratic algorithm to
handle large cycles differently, while keeping its behavior for small cycles.

During the course of the algorithm, with the current state of array t we associate
a directed graph Gt on the vertex set V and with edge (i, t[i]) for each i ∈ V . The
graph Gt may contain loops and when we consider cycles, loops are counted among
them. Initially, Gt is a disjoint union of cycles. When we modify t, we can get Gt to be
an arbitrary graph with outdegree of each vertex equal to 1.

We will introduce an alternative way of storing a long cycle in the array t. This
alternative representation of a cycle is achieved by redirecting a small number of edges.
The result is a graph with multiple connected components; each component hasO(

√
n)

elements and is a directed path leading to a cycle. We will use the lengths of these
paths and cycles to encode some information. This information will allow us to revert
the edge redirections and obtain the original cycle.

When we first encounter a long cycle, we reverse it and convert the reversed cycle to
the alternative representation. Next, whenever in the main loop we visit another vertex
of the cycle, we traverse only the component of the vertex, which takes time O(

√
n).

Previously this step could take O(n) and this is the improvement that allows us to
achieve O

(
n3/2

)
time complexity. When the loop finishes, all short cycles are reversed

and all the long cycles are stored using the alternative representation with minor mod-
ifications. Next, we perform one pass over all vertices to remove the modifications and
another pass to convert long cycles back from the alternative representation.

1.3 Segments and cycle detection

We call each connected component of the alternative representation to be a segment.
A segment is a disjoint union of two directed graphs: a cycle and a path, together with
an edge from the last vertex of the path to one of the vertices in the cycle. The first
vertex of the path is called the beginning of the segment, the number of vertices in the
segment is called its size, and the path is called its tail.
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We use the sizes of the segments, as well as the sizes of their cycles, to store some in-
formation. Thus, whenever in the main loop variable i becomes a vertex of a segment,
we need to be able to compute in-place the size of the cycle and the distance from i to
the cycle. The problem is called cycle detection and at least two different algorithms
are known to solve it in-place and in time proportional to the size of the segment: the
Floyd’s cycle-finding algorithm (also called the tortoise and hare algorithm) mentioned
in Knuth [58, Section 3.1, Exercise 6], and the Brent’s [14] algorithm. In Listing 1.4, we
shortly present the first one. The idea is as follows. First, we initialize two variables,
the tortoise and the hare, to point at element i (called start in the following pseudocode).
Next, we simultaneously progress both variables: the tortoise moves one step at a time
and the hare moves two steps at a time, where by a step we mean setting v = t[v]. We
stop when both variables point at the same element (which must happen after a num-
ber of steps that is linear in the number of vertices reachable from i). Next, we bring
the hare back to element i and start progressing the pointers again, this time both by
one step at a time. They first meet at the beginning of the cycle, i.e. the only vertex with
indegree 2 in the segment, which gives us the distance from start to the cycle. Finally,
we use the tortoise one last time to compute the size of the cycle.

Listing 1.4 The Floyd’s cycle-finding algorithm

TORTOISE-AND-HARE(start)

1 tortoise = hare = start
2 cycle_length = dist_to_cycle = 0
3 repeat
4 tortoise = t[tortoise]
5 hare = t[t[hare]]
6 until tortoise == hare
7 hare = start
8 repeat
9 tortoise = t[tortoise]

10 hare = t[hare]
11 dist_to_cycle = dist_to_cycle + 1
12 until tortoise == hare
13 repeat
14 tortoise = t[tortoise]
15 cycle_length = cycle_length + 1
16 until tortoise == hare
17 return (cycle_length, dist_to_cycle)

In our setting, it will be important to search for cycles that are in a bounded distance
from start and have a bounded size. In such a case, we would like TORTOISE-AND-
-HARE to perform a number of steps that is linear in the sum of these two bounds.

Observe that if there is a cycle with distance at most d from start and size at most s,
the loop in Listing 1.4 in lines 3 – 6 finishes after at most d + s steps. Therefore, if
we modify TORTOISE-AND-HARE to take a bound max and return (NIL,NIL) if this
loop performs more than max steps, we obtain an algorithm that correctly finds the
distance from start to the cycle and the size of the cycle if their sum is at most max , and
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otherwise either successfully finds these values or returns (NIL,NIL). This algorithm
has the important property of running in O(max ). We present it in Listing 1.5.

Listing 1.5 The Floyd’s cycle-finding algorithm performing a bounded number of steps

LIMITED-TORTOISE-AND-HARE(start ,max )

1 tortoise = hare = start
2 cycle_length = dist_to_cycle = 0
3 repeat
4 if max == 0
5 return (NIL,NIL)
6 tortoise = t[tortoise]
7 hare = t[t[hare]]
8 max = max − 1
9 until tortoise == hare

10 hare = start
11 repeat
12 tortoise = t[tortoise]
13 hare = t[hare]
14 dist_to_cycle = dist_to_cycle + 1
15 until tortoise == hare
16 repeat
17 tortoise = t[tortoise]
18 cycle_length = cycle_length + 1
19 until tortoise == hare
20 return (cycle_length, dist_to_cycle)

1.4 The alternative representation of long cycles

In this section, we define the alternative representation of a long cycle and show how
to compute it. Let k = d

√
ne. Up to isomorphism, there are k2 > n different segments

of size between k + 1 and 2k and of cycle length between 1 and k. We choose different
segments of the above form to represent different elements of V . This way, a segment
can ‘store’ a pointer to a vertex – we say that such a segment, or a pair of a segment size
and a cycle length of the above form, encodes a vertex. The encoding is the following
bijection from V to a subset of {k + 1, ..., 2k} × {1, ..., k}: ENCODE(v) = (b(v − 1)/kc +
(k+1), ((v−1) mod k)+1). Its inverse is the function DECODE(s, c) = (s−(k+1))k+c+1.

An intuitive understanding of the alternative representation is that the cycle is split
into segments such that all except O(

√
n) edges are preserved (condition (C1)), the first

segment begins at the leader, and every segment encodes the beginning of the next
segment, except the first and the last one, which we need to handle differently. This is
illustrated in Figure 1.1.

We set a threshold for a cycle to be handled using the alternative representation as
follows: a cycle is called long, if it has at least 4k+ 3 vertices, otherwise it is called short.
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For a directed graphG and a subsetX of its vertex set, letG[X] denote the subgraph
of G induced by X . For X = {x1, ..., xq}, we simply write G[x1, ..., xq]. Let c1 be the
leader of a long cycle C = (c1, ..., cp) on vertex set V ′ ⊆ V , let R be a directed graph on
V ′ with the outdegree of each vertex equal to 1 and let S be an integer from [k + 1, 2k].
We say that a pair (R, S) is a segment representation of C if there exist q > 2 integers
i1, ..., iq such that 1 = i1 < ... < iq < p and:

(C1) for every i ∈ {1, ..., p− 1} r {i2 − 1, ..., iq − 1}, the graph R contains the edge
(ci, ci+1);

(C2) the graph R[c1, ..., ci2−1] is a segment with beginning c1, size between 2k + 2 and
4k + 1 and cycle length y such that (S, y) = ENCODE(ci2);

(C3) for every j = 2, ..., q − 1, the graph R[cij , cij+1, ..., cij+1−1] is a segment with begin-
ning cij , size x and cycle length y such that (x, y) = ENCODE(cij+1

);

(C4) the graph R[ciq , ..., cp] is a segment with beginning ciq , size 2k+1 and cycle length
at most k.

The graph R is called a segmentation of C.

i1

i2

i3

i4

i5

*

Figure 1.1: A long cycle C and a possible segmentation of C, where k = 8 and q = 5. The red color
marks the cycle leader, a green line from a segment X to a vertex v indicates that X encodes v, a green
asterisk indicates the segment of size 2k + 1.

The intuition behind this definition is as follows. We want the segment representa-
tion ofC to store enough information to be able to restoreC. Condition (C3) guarantees
that every segment except the first and the last one encodes the beginning of the next
one. For the first segment, the beginning of its successor can be decoded from the
number S and the length of the cycle in the segment – this is condition (C2). The last
segment has size 2k + 1, while the length of the cycle can be any integer from [1, ..., k]
(condition (C4)). The size 2k + 1 is special, as no other segment can have this size, and
indicates that the segment is the last one. The fact that we are free to choose the length
of the cycle in the last segment is important and will be used later in the chapter.
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Recall that for a long cycle, we want to obtain a segment representation of its in-
verse. In Listing 1.6, we present a procedure that achieves this goal in-place and in
time linear in the size of the cycle. We require that when MAKE-SEGMENTS is called,
vertex leader is the leader of a long cycle C that is a subgraph of Gt. We claim that
when the procedure ends, the subgraph of Gt induced by the vertices of C together
with the number S returned by MAKE-SEGMENTS is a segment representation of the
inverse of C.

Before describing the pseudocode, we make several remarks. First, for readability,
the code in Listing 1.6, and others that follow, do not necessarily meet the in-place
memory requirements if understood literally, but it is straightforward to rewrite them
in such a way that they do. Second, we use the notation ti[v] defined as follows: t0[v] =
v and ti[v] = t[ti−1[v]] for i = 1, 2, . . .. Finally, we note that except creating appropriate
segments, the procedure returns the value bg_of _sg_created_first that is to be used
later. In fact, this variable keeps the beginning of the first segment created by this
procedure.

Listing 1.6 Producing a segment representation of the inverse of a cycle

MAKE-SEGMENTS(leader)

1 to_encode = leader
2 v1 = t[leader ]
3 while leader is not among v1, t[v1], t2[v1], ..., t2k[v1]
4 if to_encode == leader
5 s = 2k + 1
6 cycle_length = 1 // we can choose any length between 1 and k
7 bg_of _sg_created_first = t2k[v1]
8 else (s, cycle_length) = ENCODE(to_encode)
9 let vi = ti−1[v1] for i = 2, ..., s

10 next_v1 = t[vs]
11 set t[vi] = vi−1 for i = 2, ..., s
12 t[v1] = vcycle_length

13 to_encode = vs
14 v1 = next_v1
15 S = s
16 let p be the smallest i such that ti−1[v1] = leader
17 let vi = ti−1[v1] for i = 2, ..., p
18 t[v1] = to_encode
19 set t[vi] = vi−1 for i = 2, ..., p
20 return (bg_of _sg_created_first , S)

In Listing 1.6, we simultaneously reverse the cycle and form new segments. We
maintain positions v1 and to_encode in this cycle such that to_encode is the predecessor
of v1. Initially, v1 is set to t[leader ] and to_encode to leader . In each iteration of the loop,
we form a new segment with beginning ts−1[v1], size s and vertices v1, t[v1], ..., ts−1[v1],
and set to_encode to the beginning of this segment and v1 to next vertex of the cycle.
The first segment created in the loop is made to satisfy condition (C4), i.e. just to have
the special size 2k+ 1. Every next segment formed in this loop is created with size and
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cycle length to encode the vertex to_encode, as required by (C3). Line 11 is responsi-
ble for reversing the edges and line 12 for setting appropriate cycle length. The loop
condition ensures that even if s is set to the maximum possible value, i.e. 2k + 1, the
newly formed segment will not contain leader . After the loop finishes, the negation of
the loop condition guarantees that the path (v1, t[v1], t

2[v1], ..., leader) has at most 2k+ 1
vertices. In lines 18–19, this path is reversed and attached to the last created segment.
We note that because long cycles are defined to have at least 4k+3 vertices, at least two
segments are created, as required in the definition of the segment representation. Thus,
the last created segment has size at most 2k before attaching the path, and at most 4k+1
after attaching it. Next, as the loop condition is true before the last iteration, the last
created segment after the attachment of the path has at least 2k + 2 vertices. Together
with the fact that its cycle length and the value S are appropriately set, we get that the
condition (C2) is satisfied.

Now consider the problem of restoring the original cycle from its segment repre-
sentation. We start at the leader, decode the beginning of the next segment using the
value S, redirect a single edge and proceed to the next segment. This time, we use the
size of the segment and the size of its cycle to decode the beginning of the next seg-
ment. We repeat this step several times until we encounter the segment of size 2k + 1.
Then we redirect the last edge to the cycle leader (stored in a separate variable) and
stop. According to condition (C4), the cycle in this last encountered segment may have
any length between 1 and k. The code actually returns this length, as it is used by our
inversion algorithm to store additional information. The full procedure to restore a
long cycle is presented in Listing 1.7.

Listing 1.7 Restoring a long cycle from its segment representation

RESTORE-LONG-CYCLE(leader , S)

1 (cycle_length, dist_to_cycle) = TORTOISE-AND-HARE(leader)
2 segment_size = dist_to_cycle + cycle_length
3 last = tsegment_size−1[leader ]
4 bg = t[last ] = DECODE(S, cycle_length)
5 while TRUE
6 (cycle_length, dist_to_cycle) = TORTOISE-AND-HARE(bg)
7 segment_size = dist_to_cycle + cycle_length
8 last = tsegment_size−1[bg ]
9 if segment_size == 2k + 1

10 t[last ] = leader
11 return cycle_length
12 else bg = t[last ] = DECODE(segment_size, cycle_length)

1.5 The O
(
n3/2

)
algorithm

Let us summarize how we change the O(n2) algorithm to obtain O
(
n3/2

)
running time.

First, when a long cycle is first visited, it is reversed and converted into its segment rep-
resentation. The value S is stored in another part of the graphGt – this step is explained
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in Section 1.6, for now assume that this is somehow implemented, in appropriate time
and memory complexity. Short cycles are treated as before and we add a third case to
the main loop: if i belongs to a tail of a segment, we do nothing. As a result, after the
main loop is complete, all short cycles are reversed and for every long cycle there is
a segmentation of its inverse with the cycles in all segments reversed (notice that for
every segment, its cycle σ is reversed exactly once – when i becomes the leader of σ).

It remains to reverse the cycles in all segments again and then restore the original
cycle for every segment representation of a long cycle. This is achieved with two more
passes over all vertices – first we reverse the cycles in segments and then we restore
the long cycles. The whole algorithm is shown in Listing 1.8. We claim that it inverts
the permutation in-place in O

(
n3/2

)
time.

Listing 1.8 The in-place O
(
n3/2

)
time algorithm to invert a permutation

INVERT-PERMUTATION()

1 for i = 1 to n
2 (cycle_length, dist_to_cycle) = LIMITED-TORTOISE-AND-HARE(i, 4k + 2)
3 if (cycle_length, dist_to_cycle) == (NIL,NIL)
4 // i belongs to a long cycle
5 (bg_of _sg_created_first , S) = MAKE-SEGMENTS(i)
6 store S
7 else if dist_to_cycle > 1
8 // i belongs to a tail of a segment
9 continue

10 else // i belongs to a short cycle
11 if CYCLE-LEADER(i) == i
12 REVERSE-CYCLE(i)
13 for i = 1 to n
14 (cycle_length, dist_to_cycle) = LIMITED-TORTOISE-AND-HARE(i, 4k + 2)
15 if dist_to_cycle == 1
16 REVERSE-CYCLE(t[i])
17 for i = 1 to n
18 (cycle_length, dist_to_cycle) = LIMITED-TORTOISE-AND-HARE(i, 4k + 1)
19 if dist_to_cycle 6= NIL and dist_to_cycle > 1
20 // i belongs to a tail of a segment and is the leader of a long cycle in π
21 retrieve S
22 RESTORE-LONG-CYCLE(i , S)

Let us prove the correctness of the algorithm. First, note that the call to LIMITED-
-TORTOISE-AND-HARE in line 2 returns (NIL,NIL) if and only if the vertex i belongs to
a long cycle. This is because we only create segments of size at most 4k+1 and long cy-
cles are defined to have at least 4k+3 vertices. Thanks to this observation, we know that
our algorithm correctly determines whether i is a part of a tail, a short, or a long cycle,
as asserted in lines 4, 8, 10. Second, note that the call to LIMITED-TORTOISE-AND-HARE
in line 14 never returns (NIL,NIL), because at this point every component of Gt is ei-
ther a segment of size at most 4k + 1 or a short cycle. Third, note that the call to
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LIMITED-TORTOISE-AND-HARE in line 18 does not return (NIL,NIL) if i belongs to
a tail of a segment, because every segment ever created has size at most 4k + 1. There-
fore, no tail is omitted by the loop in lines 17 – 22.

Now, let C be a cycle in π with vertex set V ′. If C is short, our algorithm reverses
it only once – when i is the leader of C. If C is long, consider all the moments when
our algorithm modifies t[v] for v ∈ V ′. The first such moment is when during the loop
in lines 1 – 12 vertex i becomes the leader of C, and then the cycle is reversed and split
into segments. Next, during the same loop, all that happens is that every cycle in every
segment is reversed exactly once – when i becomes the leader of the cycle. During the
loop in lines 13 – 16, every cycle in every segment is reversed again, also exactly once
(because for every such cycle σ there is exactly one vertex with distance to σ equal
to 1). Thus, after this loop, the graph Gt[V

′] is again a segmentation of the inverse of
C. Later, the first change to G[V ′] that occurs in the loop in lines 17 – 22 happens when
i becomes the leader of C. Then, the line 22 sets Gt[V

′] to be the inverse of C. From this
moment on, the code does not modify Gt[V

′]. This completes the correctness proof.
We now prove that the running time of INVERT-PERMUTATION is O

(
n3/2

)
. To see

that the loop in lines 1 – 12 runs in O
(
n3/2

)
, note that:

• the call to LIMITED-TORTOISE-AND-HARE in line 2 takes timeO(4k + 2) = O(
√
n),

• the call to MAKE-SEGMENTS in line 5 takes time proportional to the length of the
cycle to which i belongs, potentially O(n), but occurs just once for every long
cycle,

• lines 11 – 12 take O(
√
n) time (at each iteration of the loop), as the cycle the ver-

tex i belongs to is short.

As for the loop in lines 13 – 16, the instructions LIMITED-TORTOISE-AND-HARE(i, 4k+
2) and REVERSE-CYCLE(t[i]) take time O(

√
n): the former because O(4k + 2) = O(

√
n),

and the latter because the reversed cycle is a part of a segment of size O(
√
n). Fi-

nally, in the loop in lines 17 – 22, the call to LIMITED-TORTOISE-AND-HARE takes time
O(4k + 1) = O(

√
n), and the call to RESTORE-LONG-CYCLE is O(n) but occurs exactly

once for each long cycle in π.
As a final remark, we note that the code can easily be rewritten to work in-place,

and thus our analysis of Listing 1.8 is complete.

1.6 Storing the value S

Recall that the length of the cycle in the segment of size 2k + 1 of a segmentation can
be any integer between 1 and k. We call this cycle the free cycle of that segmentation
and we use it to store information. We now make use of the return value of the proce-
dure MAKE-SEGMENTS. The procedure returns a pair of integers: the beginning of the
segment with the free cycle and the value S.

In our algorithm, there are two passes over all vertices. In both passes, long cycles
are visited in the same order, say C1, ..., Cr (here each Ci denotes a cycle before its
reversal). Let C ′1, ..., C ′r be the respective inverses of C1, ..., Cr. After the first pass, in
place of every Ci there is a segment representation (Ri, Si) of C ′i. The idea is to store Si
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as the length of the free cycle in Ri−1. This way, when restoring C ′i−1, we can retrieve
the value Si and use it to restoreC ′i. This is done for i > 2, while the value S1 is stored in
a separate variable, named first_S . In Listing 1.9, we present the updated pseudocode
of the O

(
n3/2

)
time algorithm. The only difference compared to the previous version is

the implementation of the operations store and retrieve.

Listing 1.9 The in-place O
(
n3/2

)
time algorithm to invert a permutation

INVERT-PERMUTATION()

1 storage, first_S = NIL
2 for i = 1 to n
3 (cycle_length, dist_to_cycle) = LIMITED-TORTOISE-AND-HARE(i, 4k + 2)
4 if (cycle_length, dist_to_cycle) == (NIL,NIL)
5 // i belongs to a long cycle
6 (bg_of _sg_created_first , S) = MAKE-SEGMENTS(i)
7 if storage == NIL
8 first_S = S
9 else set the length of the cycle in the segment beginning at storage to S

10 storage = bg_of _sg_created_first
11 else if dist_to_cycle > 1
12 // i belongs to a tail of a segment
13 continue
14 else // i belongs to a short cycle
15 if CYCLE-LEADER(i) == i
16 REVERSE-CYCLE(i)
17 for i = 1 to n
18 (cycle_length, dist_to_cycle) = LIMITED-TORTOISE-AND-HARE(i, 4k + 2)
19 if dist_to_cycle == 1
20 REVERSE-CYCLE(t[i])
21 S = first_S
22 for i = 1 to n
23 (cycle_length, dist_to_cycle) = LIMITED-TORTOISE-AND-HARE(i, 4k + 1)
24 if dist_to_cycle 6= NIL and dist_to_cycle > 1
25 // i belongs to a tail of a segment and is the leader of a long cycle in π
26 S = RESTORE-LONG-CYCLE(i , S)

We omit the correctness, memory consumption and time consumption analysis
of the code, as it is analogous to the analysis already done for Listing 1.8.

1.7 Suggestions for further research

As we said earlier, the problem can be solved in O(n log n) expected time using a ran-
domized algorithm. Whether there is a deterministic solution running in O(n logc n)
for some constant c seems to be an interesting question.





2
The Partial Visibility Representation Extension Problem

The concept of a visibility representation of a graph is a classic one in computational
geometry and graph drawing and the first studies on this concept date back to the
early days of these fields (see, e.g. [73, 75] and [43] for a recent survey). In the most
general setting, a visibility representation of a graph is defined as a collection of disjoint
sets from an Euclidean space such that the vertices are bijectively mapped to the sets
and the edges correspond to unobstructed lines of sight between two such sets. Many
different classes of visibility representations have been studied via restricting the space
(e.g., to be the plane), the sets (e.g., to be points [15] or line segments [16, 73]) and/or
the lines of sight (e.g., to be non-crossing or axis-parallel). In this work we focus on
a classic visibility representation setting in which the sets are horizontal line segments
(bars) in the plane and the lines of sight are vertical. As such, whenever we refer to
a visibility representation, we mean one of this type. The study of such representations
was inspired by the problems in VLSI design [71, 72] and was conducted by different
authors [32, 60, 67] under variations of the notion of visibility. Tamassia and Tollis [73]
gave an elegant unification of different definitions and we follow their approach.

The results of this chapter had been obtained in collaboration with Chaplick, Gu-
towski, Krawczyk and Liotta and were presented at the 24th International Symposium
on Graph Drawing and Network Visualization [19]. The text of this chapter reproduces1

the full version of these results that appeared in Algorithmica [20]. The only change
that has been made to the journal version is in formatting, to unify this chapter with
the other ones.

The main contribution to [20] by the author of this thesis is the entire speedup of
the O(n2) algorithm of Section 2.4.2 for extending rectangular bar visibility represen-
tations of planar st-graphs. This contribution heavily relies on a data structure assem-
bled in Section 2.4.3. This structure, together with dominance drawings and a known
technique for building 2-SAT formulas2, yields an algorithm that runs substantially
faster than the original algorithm, i.e. its running time is O

(
n log2 n

)
. The author of this

thesis also made some contributions to the proof that the Bar Visibility Representation
Extension Problem for undirected graphs is NP-complete, presented in Section 2.5.1.

1 The paper [20] in Algorithmica is an open access article distributed under the terms of the Creative
Commons CC BY (https://creativecommons.org/licenses/by/4.0/) license, which permits un-
restricted use, distribution, and reproduction in any medium, provided the original work is properly cited. There
is no requirement to obtain permission to reuse this article, see Reprints and Permissions in https:
//doi.org/10.1007/s00453-017-0322-4.

2 I.e. propagating implications through edges of a tree data structure, see [77].
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For the sake of completeness, in this chapter we include not only these contributions,
but the entire text of [20].

2.1 Introduction

A horizontal bar is an open, non-degenerate segment parallel to the x-axis of the coor-
dinate plane. For a set Γ of pairwise disjoint horizontal bars, a visibility ray between
two bars a and b in Γ is a vertical closed segment spanned between bars a and b that
intersects a, b, and no other bar in Γ. A visibility gap between two bars a and b in Γ
is an axis aligned, non-degenerate open rectangle spanned between bars a and b that
intersects no other bar.

For a graphG, a visibility representation ψ is a function that assigns a distinct horizon-
tal bar to each vertex such that these bars are pairwise disjoint and satisfy additional
visibility constraints. Following Tamassia and Tollis [73], we distinguish three different
visibility models:

• Weak visibility. In this model, for each edge {u, v} of G, there is a visibility ray
between ψ(u) and ψ(v) in ψ(V (G)).

• Strong visibility. In this model, two vertices u, v of G are adjacent if and only if
there is a visibility ray between ψ(u) and ψ(v) in ψ(V (G)).

• Bar visibility. In this model, two vertices u, v of G are adjacent if and only if there
is a visibility gap between ψ(u) and ψ(v) in ψ(V (G)).

The bar visibility model is also known as the ε-visibility model in the literature. See
Figure 2.1 for an example that shows different representations of the cycle C4 in three
visibility models.

d
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Figure 2.1: Representation of the cycle C4 in weak, strong, and bar visibility model.

A graph that admits a visibility representation in any of these models is a planar
graph, but the converse does not hold in general. Tamassia and Tollis [73] characterized
the graphs that admit a visibility representation in these models as follows. A graph
admits a weak visibility representation if and only if it is planar. A graph admits a bar
visibility representation if and only if it has a planar embedding with all cut-vertices
on the boundary of the outer face. For both of these models, Tamassia and Tollis [73]
presented linear-time algorithms for the recognition of representable graphs, and for
constructing the appropriate visibility representations. The situation is different for the
strong visibility model. Although the planar graphs admitting a strong visibility repre-
sentation are characterized in [73] (via strong st-numberings), Andreae [4] proved that
the recognition of these graphs is NP-complete. Summing up, from a computational
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point of view, the problems of recognizing graphs that admit visibility representations
and of constructing such representations are well understood.

Recently, a lot of attention has been paid to the question of extending partial rep-
resentations of graphs. In this setting a representation of some vertices of the graph is
already fixed and the task is to find a representation of the whole graph that extends
the given partial representation (see, e.g. [10, 18, 53, 54, 56, 55] for papers that study
computational aspects of extending partial representations of geometric intersection
graphs). Problems of this kind are often encountered in graph drawing and are some-
times computationally harder than testing for existence of an unconstrained drawing.
The problem of extending partial drawings of planar graphs is a good illustration of
this phenomenon. On the one hand, by Fáry’s theorem [34], every planar graph can be
drawn in the plane so that each vertex is represented as a point, and edges are pairwise
non-crossing, straight-line segments joining the corresponding points. Moreover, such
a drawing can be constructed in linear time [21, 38, 39]. On the other hand, testing
whether a partial drawing of this kind (i.e., an assignment of points to some of the ver-
tices) can be extended to a straight-line drawing of the whole graph is NP-hard [68].
However, an analogous problem in the model that allows the edges to be drawn as
arbitrary curves instead of straight-line segments has a linear-time solution [5]. A sim-
ilar phenomenon occurs when we consider contact representations of planar graphs.
Every planar graph is representable as a disk contact graph [59] or a triangle contact
graph [37]. Every bipartite planar graph is representable as a contact graph of hori-
zontal and vertical segments in the plane [36, 49]. Although such representations can
be constructed in polynomial time [36, 37, 63], the problems of extending partial rep-
resentations of these kinds are NP-hard [17].

In this paper we initiate the study of extending partial visibility representations of
graphs. From a practical point of view, it may be worth recalling that visibility repre-
sentations are not only an appealing way of drawing graphs, but they are also typically
used as an intermediate step towards constructing visualizations of networks in which
all edges are oriented in a common direction and some vertices are aligned (for exam-
ple to highlight critical activities in a PERT diagram). Visibility representations are also
used to construct orthogonal drawings with at most two bends per edge. See, e.g. [25]
for more details about these applications of visibility representations. The partial rep-
resentation extension problem that we study in this paper occurs, for example, when
we want to use visibility representations to incrementally draw a large network and
we want to preserve the user’s mental map in a visual exploration that adds a few
vertices and edges per time.

Both for weak visibility and for strong visibility, the partial representation extension
problems are easily found to be NP-hard. For weak visibility, the hardness follows eas-
ily from results on contact representations by Chaplick et al. [17]. For strong visibility,
it follows trivially from results by Andreae [4]. Our contribution is the study of the
partial representation extension problem for bar visibility representations. Hence, the
central problem for this paper is the following:

Bar Visibility Representation Extension:

Input: (G,ψ′), where G is a graph and ψ′ is a mapping assigning bars to some subset
V ′ of V (G).
Question: Does G admit a bar visibility representation ψ with ψ|V ′ = ψ′?
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In Section 2.5 we show that this problem is NP-complete.

Theorem 2.1. The Bar Visibility Representation Extension Problem is NP-complete.

The proof is a standard reduction from PLANARMONOTONE3SAT problem, which
is known to be NP-complete thanks to de Berg and Khosravi [8]. The reduction uses
gadgets that simulate logic gates and constructs a planar Boolean circuit that encodes
the given formula.

We investigate a few natural modifications of the problem. Most notably, we pro-
vide some efficient algorithms for extension problems for directed graphs. A visibility
representation introduces a natural orientation to edges of the graph – each edge is ori-
ented from the lower bar to the upper one. The function ψ is a representation of a di-
graph G if, additionally to satisfying visibility constraints, it puts the bar ψ(u) strictly
below the bar ψ(v) for each directed edge (u, v) of G. Note that a planar digraph that
admits a visibility representation also admits an upward planar drawing (see e.g., [41]),
that is, a drawing in which the edges are represented as non-crossing monotonic up-
ward curves.

A source (sink) of a digraph is a vertex without incoming (outgoing) edges. A planar
st-graph is a planar acyclic digraph with exactly one source s and exactly one sink t
that admits a planar embedding such that s and t are on the outer face. Di Battista and
Tamassia [27] proved that the following three statements are equivalent for a planar
digraph G:

• G admits an upward planar drawing,

• G is a subgraph of a planar st-graph,

• G admits a weak visibility representation.

Garg and Tamassia [42] showed that the recognition of planar digraphs that admit
an upward planar drawing is NP-complete. It follows that the recognition of planar
digraphs that admit a weak visibility representation is NP-complete, and so is the
corresponding partial representation extension problem. Nevertheless, the situation
might be different for bar visibility. In Section 2.3 we prove the following lemma that
characterizes planar digraphs that admit a bar visibility representation.

Lemma 2.2. Let st(G) be a graph constructed from a planar digraph G by adding two vertices
s and t, the edge (s, t), an edge (s, v) for each source vertex v of G, and an edge (v, t) for each
sink vertex v of G. A planar directed graph G admits a bar visibility representation if and only
if the graph st(G) is a planar st-graph.

Since planar st-graphs can be recognized in linear time, planar digraphs that admit
a bar visibility representation are also recognizable in linear time. The natural problem
that arises is the following:

Bar Visibility Representation Extension for digraphs:

Input: (G,ψ′), where G is a directed graph and ψ′ is a mapping assigning bars to some
subset V ′ of V (G).
Question: Does G admit a bar visibility representation ψ with ψ|V ′ = ψ′?
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Figure 2.2: A planar st-graph G and a rectangular bar visibility representation ψ of G.

Although we do not provide a solution for this problem, we present an efficient algo-
rithm for an important variant. A bar visibility representation ψ of a directed graph G
is called rectangular if ψ has a unique bar ψ(s) with the lowest y-coordinate, a unique
bar ψ(t) with the highest y-coordinate, ψ(s) and ψ(t) span the same x-interval, and all
other bars are inside the rectangle spanned between ψ(s) and ψ(t). See Figure 2.2 for
an example of a rectangular bar visibility representation of a planar st-graph.

Tamassia and Tollis [73] showed that a planar digraph G admits a rectangular bar
visibility representation if and only if G is a planar st-graph. In Section 2.4 we give an
efficient algorithm for the following problem:

Rectangular Bar Visibility Representation Extension for planar st-graphs:

Input: (G,ψ′), whereG is a planar st-graph and ψ′ is a mapping assigning bars to some
subset V ′ of V (G).
Question: Does G admit a rectangular bar visibility representation ψ with ψ|V ′ = ψ′?

The main result in this paper, presented in Section 2.4, is the following.

Theorem 2.3. The Rectangular Bar Visibility Representation Extension Problem for a planar
st-graph with n vertices can be solved in O

(
n log2 n

)
time.

Our algorithm exploits the correspondence between bar visibility representations
and st-orientations of planar graphs, and utilizes the SPQR-decomposition of planar
graphs.

In the study of planar graphs and their representations, it is important to under-
stand the area requirements of a drawing. A common way to measure this is by the
smallest integer grid in which a drawing can be realized (see, e.g. [9, 50, 51, 52, 74] for
papers that specifically study the area required by visibility representations of graphs
and [26] for a survey on compact drawings of graphs).

A visibility representation is a grid representation when all bars used in the represen-
tation have integral coordinates. Any visibility representation can be easily modified
into a grid representation. However, this transformation does not preserve coordinates
of the bars. In particular, it might not preserve the partial representation. We can show
that the (Rectangular) Bar Visibility Representation Extension Problem is NP-hard on
series-parallel planar st-graphs when one demands a grid representation.

Our results use different tools developed for graph representation problems. In par-
ticular, we exploit the correspondence between bar visibility representations and st-
orientations of planar graphs, and utilize the SPQR-decomposition for planar graphs.
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The rest of the paper is organized as follows. Section 2.2 contains the necessary def-
initions and description of the necessary tools. Section 2.3 contains a characterization
of planar digraphs that admit a bar visibility representation. Section 2.4 contains the
study of rectangular representations of planar st-graphs. Section 2.5 contains hardness
results for grid representations and for the bar visibility representation extension prob-
lem for undirected graphs. Section 2.6 contains conclusions and some open problems.

2.2 Preliminaries

2.2.1 Notation

A horizontal bar is an open, non-degenerate segment parallel to the x-axis of the coor-
dinate plane. For a horizontal bar a, functions y(a), l(a), r(a) give the y-coordinate of
a, the x-coordinate of the left end of a, and the x-coordinate of the right end of a re-
spectively. For any bounded object Q in the plane, we use functions X(Q) and Y (Q) to
denote the smallest possible, possibly degenerate, closed interval containing the pro-
jection of Q on the x-, and on the y-axis respectively. We denote the left end of X(Q)
by l(Q) and the right end of X(Q) by r(Q). Let a and b be two horizontal bars with
y(a) < y(b). We say that Q is spanned between a and b if X(Q) ⊆ X(a) ∩ X(b), and
Y (Q) = [y(a), y(b)].

For a graph G, a visibility representation ψ in any model (see Section 2.1) is a func-
tion that assigns distinct, pairwise disjoint horizontal bars to the vertices of G. We
often describe the representation ψ by providing the values of functions yψ = y(ψ(v)),
lψ = l(ψ(v)), rψ = r(ψ(v)) for any vertex v of G. We drop the subscripts when the
representation ψ is known from the context.

2.2.2 Planar st-graphs and their properties

Given a graph G = (V,E), a planar drawing of G is a geometric representation of G in
the plane such that: (i) each vertex v ∈ V is drawn as a distinct point pv; (ii) each edge
e = (u, v) ∈ E is drawn as a simple curve connecting pu and pv; (iii) no two edges
intersect except at their common end-vertices (if they are adjacent). A graph is planar
if it admits a planar drawing.

Let G be a connected planar graph. A planar drawing Θ of G divides the plane
into topologically connected regions, called faces. Exactly one face of Θ is an infinite
region, and is called the external face of Θ; the other faces are called internal. Each
internal face is described by the counter-clockwise sequence of vertices and edges that
form its boundary; the external face is described by the clockwise sequence of vertices
and edges of its boundary. The description of the set of (internal and external) faces
determined by a planar drawing of G is called a planar embedding of G.

Let G be a planar st-graph. An st-embedding of G is any planar embedding with
s and t on the boundary of the outer face. A planar st-graph together with an st-
embedding is called a plane st-graph. Vertices s and t of a planar (plane) st-graph are
called the poles of G. We abuse notation and we use the term planar (plane) uv-graph to
mean a planar (plane) st-graph with poles u and v. An inner vertex of G is a vertex of
G other than the poles of G. A real valued function ξ from V (G) is an st-valuation of G
if for each edge (u, v) we have ξ(u) < ξ(v).
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Tamassia and Tollis [73] showed that the following properties are satisfied for any
plane st-graph:

1. For every inner face f , the boundary of f consists of two directed paths with
a common origin and a common destination.

2. The boundary of the outer face consists of two directed paths, with a common
origin s and a common destination t.

3. For every inner vertex v, its incoming (outgoing) edges are consecutive around v.

To illustrate the above properties, observe in Figure 2.2 two paths on the boundary
of the face (s, 2, 3, 5, 1), and the alignment of incoming and outgoing edges around
vertex 5.

Let G be a plane st-graph. We introduce two special objects associated with the
outer face of G: the left outer face s∗ and the right outer face t∗. Let e = (u, v) be an edge
of G. The left face (right face) of e is the face of G that is to the left (right) of e when we
traverse e from u to v. If the outer face of G is to the left (right) of e then we say that
the left face (right face) of e is s∗ (t∗).

Using property (1) we can define the left path and the right path for each inner face
of G as follows. If f is an inner face of G then the left path (right path) of f consists of
edges from the boundary of f for which f is the right face (left face). For example, in
Figure 2.2, the path (s, 1, 5) is the left path of the face (s, 2, 3, 5, 1) and the path (s, 2, 3, 5)
is the right path of this face.

Using property (2) we can define the left path for t∗ and the right path for s∗ as
follows. The right path of s∗ consists of edges from the boundary of the outer face
that have the outer face on their left side. The left path of t∗ consists of edges from the
boundary of the outer face that have the outer face on their right side. The left path
for s∗ and the right path for t∗ are not defined. For example, in Figure 2.2, the path
(s, 1, 5, t) is the right path of s∗ and the path (s, 12, 13, t) is the left path of t∗.

Using property (3) we can define the left face and the right face for each vertex of G
as follows. The left face (right face) of an inner vertex v is the unique face f incident to
v such that there are two edges e1 and e2 on the right path (left path) of f , where e1 is
an incoming edge for v and e2 is an outgoing edge for v. If the left face (right face) of
v is the outer face of G, we say that the left face (right face) of u is s∗ (t∗). We also say
that s∗ (t∗) is the left face (right face) of s and t. For example, in Figure 2.2, the left face
of vertex 5 is s∗ and the right face of this vertex is the face (s, 7, 8, 10, 14, 6, 5).

Let G be a plane st-graph. Let F be the set of inner faces of G together with s∗ and
t∗. The dual of G is the directed graph G∗ with vertex set F and edge set consisting of
all pairs (f, g) such that there exists an edge e of G with f being the left face of e and
g being the right face of e. Di Battista and Tamassia [27] showed that G∗ is a planar
s∗t∗-graph.

Let G be a plane st-graph and let G∗ be the dual of G. For two faces f and g in
V (G∗) we say that f is to the left of g, and that g is to the right of f , if there is a directed
path from f to g in G∗.
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2.2.3 SPQR-trees for planar st-graphs

An SPQR-tree for a planar graph G is usually used to describe all possible planar
embeddings ofG. In this paper we employ a specific version of SPQR-trees that allows
us to describe all st-embeddings of a planar st-graph. Di Battista and Tamassia [28]
were the first to define such SPQR-trees, and to prove the properties presented in this
section.

Let G be a planar st-graph. A cut-vertex of G is a vertex whose removal disconnects
G. A separation pair of G is a pair of vertices whose removal disconnects G. A split pair
of G is either a separation pair or a pair of adjacent vertices. A split component of a split
pair {u, v} is either an edge (u, v) or a maximal subgraph C of G such that C is a planar
uv-graph and {u, v} is not a split pair of C. A maximal split pair {u, v} of G is a split
pair such that there is no other split pair {u′, v′}where {u, v} is contained in some split
component of {u′, v′}.

An SPQR-tree T for a planar st-graph G is a recursive decomposition of G with
respect to the split pairs of G. The tree T is rooted and its nodes are of four types: S for
series nodes, P for parallel nodes, Q for edge nodes, and R for rigid nodes. Each node µ of
T represents a planar st-graph (a subgraph of G) called the pertinent digraph of µ and
denoted by Gµ. We use sµ and tµ to denote the poles of Gµ: sµ is the source of Gµ, and
tµ is the sink of Gµ. The pertinent digraph of the root node of T is G. Each node µ of
T has an associated directed multigraph skel(µ) called the skeleton of µ. If µ is not the
root of the tree, then let λ be the parent of µ in T . The node µ is associated with an
edge of the skeleton of λ, called the virtual edge of µ, which connects the poles of Gµ

and represents Gµ in skel(λ). The tree T is defined recursively as follows.

• Trivial case. If G consists of a single edge (s, t), then T is simply a Q-node µ. The
skeleton skel(µ) is G.

• Series case. If G is a chain of biconnected components G1, . . . , Gk for some k > 2
and c1, . . . , ck−1 are the cut-vertices encountered in this order on any path from
s to t, then the root of T is an S-node µ with children µ1, . . . , µk. Let c0 = s and
ck = t. The skeleton skel(µ) is the directed path c0, . . . , ck. The pertinent digraph
of µi is Gi, and edge (ci−1, ci) of skel(µ) is the virtual edge of µi.

• Parallel case. If {s, t} is a split pair of G with split components G1, . . . , Gk for some
k > 2, then the root of T is a P -node µ with children µ1, . . . , µk. The skeleton
skel(µ) has k parallel edges (s, t): e1, . . . , ek. The pertinent digraph of µi isGi, and
edge ei of skel(µ) is the virtual edge of µi.

• Rigid case. If none of the above applies, let {s1, t1}, . . . , {sk, tk} for some k > 2
be the maximal split pairs of G. For i = 1, . . . , k, let Gi be the union of all split
components of {si, ti}. The root of T is an R-node µ with children µ1, . . . , µk. The
skeleton skel(µ) is obtained from G by replacing each subgraph Gi with an edge
ei = (si, ti). The pertinent digraph of µi is Gi, and edge ei of skel(µ) is the virtual
edge of µi.

Note also that there is no additional edge between the poles of the skeleton of a se-
ries, parallel or rigid node – this is the only difference in the SPQR-tree definition
given above and the one given in [28]. In particular, our definition ensures that we
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Figure 2.3: The SPQR-tree for the graph in Figure 2.2. The Q-nodes (leaves of the tree) have been omit-
ted for clarity. For each S-, P -, and R-node, the skeleton is given such that each solid edge corresponds
to a Q-node child and each dashed edge corresponds to a S-, P -, or R-node child.
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have a one-to-one correspondence between the edges of skel(µ) and the children of
µ. See Figure 2.3 for an example of an SPQR-decomposition of the planar st-graph
presented in Figure 2.2.

Observe that the skeleton of a rigid node has only two st-embeddings, one being
the flip of the other around the poles of the node. The skeleton of a parallel node with
k children has k! st-embeddings, one for every permutation of the edges of skel(µ).
The skeleton of a series node or a edge node has only one st-embedding.

There is a correspondence between st-embeddings of a planar st-graph G and st-
embeddings of the skeletons of P -nodes and R-nodes in the SPQR-tree T for G. Hav-
ing selected an st-embedding of the skeleton of all P -nodes and all R-nodes, we can
construct an embedding ofG as follows. Let t be the root of T . We replace every virtual
edge (u, v) in the embedding of skel(t) with the recursively defined embedding of the
pertinent digraph of a child of t associated with the edge (u, v). On the other hand, any
st-embedding of G determines:

• one of the two possible flips of the skeleton of every R-node in T ;

• a permutation of the edges in the skeleton of every P -node.

Di Battista and Tamassia [28] showed that the SPQR-tree T for a planar st-graph
with n vertices has O(n) nodes, and that the total number of edges of all skeletons is
O(n). Gutwenger and Mutzel [44] showed that the SPQR-tree can be computed in
linear time.

2.2.4 NP-complete problems

Our hardness proofs use reductions from the following NP-complete problems:

3PARTITION:
Input: A set of positive integers w, a1, a2, . . . , a3m such that for each i = 1, . . . , 3m, we
have w

4
< ai <

w
2

.
Question: Can {a1, . . . , a3m} be partitioned into m triples, such that the total sum of
each triple is exactly w?

3PARTITION is known to be strongly NP-complete [40], i.e., the problem remains NP-
complete even when the integers given in the input are encoded in unary.

PLANARMONOTONE3SAT:
Input: A rectilinear planar representation of a 3SAT formula in which each variable is
a horizontal segment on the x-axis, each clause is a horizontal segment above or below
the x-axis with straight-line vertical connections to the variables it includes. All pos-
itive clauses are above the x-axis and all negative clauses are below the x-axis. There
are no clauses including both positive and negative occurrences of variables, all hori-
zontal segments are pairwise disjoint, and each vertical connection intersects only with
the two segments that it connects. See Figure 2.4 for an example.
Question: Is the formula satisfiable?

PLANARMONOTONE3SAT is known to be NP-complete thanks to de Berg and Khos-
ravi [8].
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x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x4 ∨ x5 ∨ x6

x1 ∨ x3 ∨ x6

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

x1 ∨ x4 ∨ x5

Figure 2.4: A PLANARMONOTONE3SAT formula with variables x1, . . . , x6; positive clauses {x1, x3, x6},
{x1, x2, x3}, and {x4, x5, x6}; and negative clauses {x1, x4, x5}, {x1, x2, x4}, and {x2, x3, x4}.

2.3 Bar visibility and rectangular bar visibility representations for
planar digraphs

A bar visibility representation ψ of a planar st-graph is rectangular when
X(ψ(s)) = X(ψ(t)) and for any vertex v we have X(ψ(v)) ⊆ X(ψ(s)). Tamassia and
Tollis [73] observed the following connection between planar st-graphs and rectangu-
lar bar visibility representations. Any collection of pairwise disjoint bars Γ with the
bottom-most bar s and the top-most bar t that satisfies X(s) = X(t), and X(a) ⊆ X(s)
for every a ∈ Γ, naturally induces a planar st-graph on the set Γ – a digraph containing
all edges (a, b) such that a is strictly below b and there is a visibility gap between a and
b in Γ. They further showed that every planar st-graph has a rectangular bar visibility
representation.

The next lemma characterizes the planar digraphs that admit a bar visibility repre-
sentation. For a planar digraph G, let st(G) be a graph constructed from G by adding
two vertices s and t, the edge (s, t), an edge (s, v) for each source vertex v of G, and an
edge (v, t) for each sink vertex v of G.

Lemma 2.2. A planar directed graph G admits a bar visibility representation if and only if the
graph st(G) is a planar st-graph.

Proof. Suppose that st(G) is a planar st-graph. Tamassia and Tollis [73] showed that
st(G) has a rectangular bar visibility representation ψ with the bottom-most bar ψ(s)
and the top-most bar ψ(t). Clearly, ψ|V (G) is a bar visibility representation for G.

Conversely, assume that ψ is a bar visibility representation of G and Γ is the image
of ψ. For every bar a ∈ Γ, let A(a) (B(a)) be the interior of the set of all x such that
ψ(a) is the first encountered bar from Γ if we traverse downward (upward) the vertical
line with the x-coordinate x. We say that a bar a ∈ Γ is visible from above (below) if
A(a) 6= ∅ (B(a) 6= ∅). Note that each A(a) and B(a) is a union of disjoint open intervals.
Observe also that if a represents a sink (a source) of G then A(a) = (l(a), r(a)) (B(a) =
(l(a), r(a))). Otherwise, ψ would not be a bar visibility representation of G.

We claim that some bars in Γ can be extended so that the new set of bars still rep-
resents G and has the property that only the bars representing the sources are visible
from below and only the bars representing the sinks are visible from above. Before we
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give a proof of this claim, suppose that ψ satisfies this property. We can define two
bars ψ(s) and ψ(t) such that X(s) = X(t), X(

⋃
Γ) ( X(s), and yψ(s) < yψ(v) < yψ(t)

for every vertex v of G. This extension of ψ is a rectangular bar representation of st(G).
It follows that st(G) is a planar st-graph.

Now we show that ψ can be modified so that the bars visible from below (above)
represent the sources (sinks) of G. Let X denote the set of the x-coordinates of all end-
points of all bars in Γ. Let ε and δ be respectively the minimum and the maximum
difference between any two values in X . Suppose that there is a bar ψ(v) in Γ that is
visible from below and v is not a source of G. Suppose (L,R) is an interval of B(ψ(v))
and observe that both L and R are in X . Since v is not a source of G and ψ is a visibility
representation of G, there is a vertex u in G such that (u, v) is an edge of G, and either
rψ(u) = L or lψ(u) = R. If rψ(u) = L, we extend ψ(u) to the right so that rψ(u) = R,
and if lψ(u) = R, we extend ψ(u) to the left so that lψ(u) = L. Observe that such
a modification only introduces additional visibility gaps between ψ(u) and ψ(v), and
does not change any visibility gap between any other two bars. Thus, the modified ψ
remains a representation of G. Moreover, all end-points of all bars are still in X and
the total length of all bars increases by at least ε. We repeat the same procedure as
long as there is a vertex v that is not a source of G and ψ(v) is visible from below. The
number of repetitions is bounded, as the length of any single bar never exceeds δ. In the
resulting representation, each bar visible from below represents a source of G. Next,
we transform ψ again, using a similar algorithm, so that each bar visible from above
represents a sink of G. It is easy to see, that in the second step we do not introduce
any new bars that are visible from below. Thus, in the resulting representation, all the
bars visible from below are sources of G and all the bars visible from above are sinks
of G.

Lemma 2.2 gives a linear-time algorithm for the recognition of planar digraphs that
admit a bar visibility representation. Recall from the discussion in Section 2.1 that the
recognition of planar digraphs that admit a weak visibility representation is an NP-
complete problem. It follows that the extension problem for digraphs in the weak vis-
ibility model is NP-complete. We do not know the complexity status for the extension
problem for digraphs neither in the strong nor in the bar visibility model. Nevertheless,
the results in Section 2.4 give hope for a polynomial-time algorithm for the extension
problem for bar visibility representations of digraphs.

2.4 Rectangular bar visibility representations of planar st-graphs

In this section we solve the following problem.

Rectangular Bar Visibility Representation Extension for planar st-graphs:
Input: (G,ψ′), whereG is a planar st-graph and ψ′ is a mapping assigning bars to some
subset V ′ of V (G).
Question: Does G admit a rectangular bar visibility representation ψ with ψ|V ′ = ψ′?

As our algorithm is rather technical (involving many small details), we now pro-
vide a high level description of the main ideas. In the first step, our algorithm calcu-
lates y-coordinates yψ for our potential bars. Namely, the algorithm checks whether
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yψ′ : V ′ → R is extendable to an st-valuation yψ of G. When such an extension does not
exist, the algorithm rejects; otherwise it turns out (as shown in Lemma 2.10) that any
extension of yψ′ can be used as yψ. To determine whether there is a set of x-coordinates
to match this set of y-coordinates, we use a dynamic programming approach which
proceeds bottom-up through the SPQR-tree T of the given planar st-graph G. Recall
that, as discussed in Section 2.2.3, T provides a hierarchical decomposition ofG accord-
ing to separation pairs, i.e., each node µ of T corresponds to a separation pair (u, v) in
G. Additionally, for a separation pair (u, v) corresponding to a node µ in T , the sub-
graph ‘between’ u and v is a planar st-graph, and is precisely the pertinent digraph of
µ. We will see that there is a similar connection between the SPQR-tree and each rect-
angular bar visibility representation ψ of G. Namely, we describe how ψ ‘decomposes’
into sub-representations according to these separation pairs, i.e., for each node µ and
its corresponding separation pair (u, v), there is a particular rectangular bar visibility
representation ψµ of the pertinent digraph Gµ of µ in ψ. Moreover, we will see that
each ψµ partitions into rectangular ‘tiles’ where each ‘tile’ is a representation of one of
its children. We say that a ‘tile’ of a representation ψµ of Gµ is valid when it extends
ψ′|V (Gµ). Now, essentially, the key to our dynamic program is to efficiently describe
the set of possible valid ‘tiles’ of the representations of Gµ in terms of the valid ‘tiles’
of µ’s children. It turns out that it is sufficient to consider four types of ‘tiles’ for each
node of T in order to accomplish this. To efficiently determine the types of ‘tiles’ admit-
ted by a node µ, we distinguish different cases depending on whether µ is a P -node,
an S-node, a Q-node, or an R-node. As usual, for dynamic programming involving
SQPR-trees, the R-node case is the most complex. So, we describe it first in using
a quadratic-time subroutine which is more intuitive. We then describe a speed-up of
this subroutine which runs in nearly linear time (this subroutine remains as the main
bottleneck for our running time).

Section 2.4.1 presents structural properties of bar visibility representations in rela-
tion to an SPQR-decomposition. We describe how a rectangular bar visibility repre-
sentation of the pertinent digraph of a node µ in the SPQR-decomposition is com-
posed of rectangular bar visibility representations of the pertinent digraphs of the chil-
dren of µ. In Section 2.4.2 we present an algorithm that solves this extension problem
in quadratic time. In Section 2.4.3 we refine the algorithm to work in O

(
n log2 n

)
time

for a planar st-graph with n vertices.

2.4.1 Structural properties

Let Γ be a collection of pairwise disjoint bars. For a pair of bars a, b in Γ with y(a) < y(b)
let the set of visibility rectangles R(a, b) be the interior of the set of points (x, y) in R2 that
satisfy the following properties:

1. a is the first bar in Γ on a vertical line downwards from (x, y),

2. b is the first bar in Γ on a vertical line upwards from (x, y).

Figure 2.2 shows (shaded area) the set of visibility rectangles R(s, 5). Note that there is
a visibility gap between a and b in Γ if and only if R(a, b) is non-empty. Additionally,
if R(a, b) is non-empty, then it is a union of pairwise disjoint open rectangles spanned
between a and b.
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Let G be a planar st-graph and let T be the SPQR-tree for G. Let ψ be a rectangular
bar visibility representation of G. For every node µ of T we define the set Bψ(µ), called
the bounding box of µ with respect to ψ, as the closure of the following union:⋃

{R(ψ(u), ψ(v)) : (u, v) is an edge of the pertinent digraph Gµ} .

If ψ is clear from the context, then the set Bψ(µ) is denoted by B(µ) and is called the
bounding box of µ. Let B(ψ) = X(ψ(V (G))) × Y (ψ(V (G))) be the minimal closed axis-
aligned rectangle that contains the representation ψ. It follows from the definition of
rectangular embedding, and from the definition of bounding box, that:

1. B(ψ) = Bψ(µ), where µ is the root of T ,

2. each point in B(ψ) is in the closure of at least one set of visibility rectangles
R(ψ(u), ψ(v)) for some edge (u, v) of G,

3. each point in B(ψ) is in at most one set of visibility rectangles.

The following two lemmas describe basic properties of a bounding box.

Lemma 2.4 (Q-Tiling Lemma). Let µ be a Q-node in T that corresponds to an edge (u, v)
of G. For any rectangular bar visibility representation ψ of G we have:

1. B(µ) is a union of pairwise disjoint rectangles spanned between ψ(u) and ψ(v).

2. If B(µ) is not a single rectangle, then the parent λ of µ in T is a P -node, and u, v are the
poles of the pertinent digraph Gλ.

Proof. The first assertion is obvious. Suppose that B(µ) is a union of at least 2 rectan-
gles. Let R1 and R2 be the two left-most rectangles of B(µ). Consider the rectangle S
spanned between ψ(u) and ψ(v) and between the right side of R1 and left side of R2.
There are some bars in ψ(G) that are contained in S. The vertices corresponding to
these bars together with u and v form a planar uv-graph. Hence, the split pair {u, v}
has at least two split components: the edge (u, v) and at least one other component.
Thus, λ is a P -node with poles u and v.

In Figure 2.5 observe that the set R(s, 5) is a union of two rectangles. Recall the
SPQR-decomposition presented in Figure 2.3 and that the Q-node corresponding to
the edge (s, 5) is a child of a P -node.

The Basic Tiling Lemma presented below describes the relation between the bound-
ing box of an inner node µ and the bounding boxes of the children of µ in any rectan-
gular bar visibility representation of G. In particular, the next lemma justifies the use
of the name bounding box for the set B(µ).

Lemma 2.5 (Basic Tiling Lemma). Let µ be an inner node in T with children µ1, . . . , µk,
k > 2. For any rectangular bar visibility representation ψ of G we have:

1. ψ(v) ⊆ B(µ) for every inner vertex v of Gµ.

2. B(µ) is a rectangle that is spanned between ψ(sµ) and ψ(tµ).
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3. The sets B(µ1), . . . , B(µk) tile the rectangle B(µ), i.e., B(µ1), . . . , B(µk) cover B(µ)
and the interiors of B(µ1), . . . , B(µk) are pairwise disjoint.

Proof. Observe that for an inner vertex v ofGµ, any edge ofG incident to v is an edge of
Gµ. The closures of the sets of visibility rectangles corresponding to all edges incident
to v cover ψ(v) and Property (1) follows.

To prove (2) note that for every inner vertex v of Gµ, the set

Sµ(v) = X(ψ(v))× [y(ψ(sµ)), y(ψ(tµ))]

is a rectangle that is spanned between ψ(sµ) and ψ(tµ) and it is internally disjoint from
ψ(w) for any vertex w not in V (Gµ). Otherwise, there would be a visibility gap that
would correspond to an edge between an inner vertex of Gµ and a vertex in V (G) r
V (Gµ).

If (sµ, tµ) is not an edge of Gµ, then

B(µ) =
⋃
{Sµ(v) : v is an inner vertex of Gµ};

otherwise

B(µ) =
⋃
{Sµ(v) : v is an inner vertex of Gµ} ∪R(ψ(sµ), ψ(tµ)).

In both cases B(µ) is a rectangle spanned between ψ(sµ) and ψ(tµ).
Property (3) follows immediately from the fact that the edges of Gµ1 , . . . , Gµk form

a partition of the edges of Gµ.

In the next three lemmas we extend the Basic Tiling Lemma by a more precise de-
scription of tilings of the bounding box of an inner node µ by the bounding boxes of
the children of µ. We separately consider the cases that µ is a P -node, an S-node, and
an R-node. Figures 2.5, and 2.6 give a graphical presentation of the Tiling Lemmas.
In Lemmas 2.6, 2.7, and 2.9 we assume that µ1, . . . , µk are the children of µ for some
k > 2.

Lemma 2.6 (P-Tiling Lemma). Let µ be a P -node. For any rectangular bar visibility repre-
sentation ψ of G we have:

1. If (sµ, tµ) is not an edge of G, then the sets B(µ1), . . . , B(µk) are rectangles spanned
between ψ(sµ) and ψ(tµ).

2. If (sµ, tµ) is an edge of G, then µ has exactly one child that is a Q-node, say µ1, and:

• For i = 2, . . . , k, B(µi) is a rectangle spanned between ψ(sµ) and ψ(tµ).

• B(µ1) is a non-empty union of rectangles spanned between ψ(sµ) and ψ(tµ).

Proof. This is an immediate consequence of the Basic Tiling Lemma and Lemma 2.4.

When µ is an S-node or an R-node, then there is no edge (sµ, tµ). By the Q-Tiling
Lemma and by the Basic Tiling Lemma, each set B(µi) is a rectangle that is spanned
between the bars representing the poles of Gµi .
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Figure 2.5: The graph G, the pertinent digraph of the P -node µ1 (solid thick edges), the pertinent di-
graph of the S-node µ2 (dashed thick edges), the representation ψ(G), the tiling of µ1 in ψ(G) (solid fill),
and the tiling of µ2 in ψ(G) (patterned fill).

Lemma 2.7 (S-Tiling Lemma). Let µ be an S-node. Let c1, . . . , ck−1 be the cut-vertices of
Gµ encountered in this order on a path from sµ to tµ. Let c0 = sµ, and ck = tµ. For
any rectangular bar visibility representation ψ of G, for every i = 1, . . . , k − 1, we have
X(ψ(ci)) = X(B(µ)). For every i = 1, . . . , k, B(µi) is spanned between ψ(ci−1) and ψ(ci)
and X(B(µi)) = X(B(µ)).

Proof. Suppose to the contrary, that the bar assigned to cut-vertex ci is the first one that
does not span the whole interval X(B(µ)). This creates a gap of visibility between a
vertex in the i-th biconnected component and a vertex in one of the later components.
This contradicts ci being a cut-vertex.

The R-Tiling Lemma should describe all possible tilings of the bounding box of an
R-node µ that appear in all representations of G. Since there is a one-to-one correspon-
dence between the edges of skel(µ) and the children of µ, we abuse notation and write
B(u, v) to denote the bounding box of the child of µ that corresponds to the edge (u, v)
of skel(µ). By the Basic Tilling Lemma, B(u, v) is spanned between the bars represent-
ing u and v.

Suppose that ψ is a representation ofG. The tiling τ = (Bψ(µ1), . . . , Bψ(µk)) ofBψ(µ)
determines a triple (E , ξ, χ), where:

• E is an sµtµ-embedding of skel(µ),

• ξ is an st-valuation of E ,

• χ is an st-valuation of E∗,

that are defined as follows.
Consider the following planar drawing of the planar st-graph skel(µ). Draw every

vertex u in the middle of ψ(u), and every edge e = (u, v) as a curve that starts in the
middle of ψ(u), goes a little above ψ(u) towards the rectangle Bψ(u, v), goes inside
Bψ(u, v) towards ψ(v), and a little below ψ(v) to the middle of ψ(v). This way we
obtain a plane st-graph E , which is an st-embedding of skel(µ). The st-valuation ξ of E
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Figure 2.6: The tiling of the R-node µ, the embedding E of skel(µ), splitting lines (dashed) for faces of
E , and the st-valuation χ of E∗.

is just the restriction of yψ to the vertices from skel(µ), i.e., ξ = yψ|V (skel(µ)). To define
the st-valuation χ of E∗ we use the following lemma.

Lemma 2.8 (Face Condition).

1. Let f be a face in V (E∗) different than t∗, and v0, v1, . . . , vn be the right path of f . There
is a vertical line Lr(f) that contains the left endpoints of ψ(v1), . . . , ψ(vn−1) and the left
sides of Bψ(v0, v1), . . . , Bψ(vn−1, vn).

2. Let f be a face in V (E∗) different than s∗, and u0, u1, . . . , um be the left path of f . There
is a vertical line Ll(f) that contains the right endpoints of ψ(u1), . . . , ψ(um−1) and the
right sides of Bψ(u0, u1), . . . , Bψ(um−1, um).

3. If f is an inner face of E then Ll(f) = Lr(f).

Proof. To prove (1) we first show that for every i = 1, . . . , n− 1, we have

l(ψ(vi)) = l(Bψ(vi−1, vi)).

By the Basic Tiling Lemma, Bψ(vi−1, vi) is a rectangle spanned between ψ(vi−1) and
ψ(vi). It follows that l(ψ(vi)) 6 l(Bψ(vi−1, vi)). Suppose that l(ψ(vi)) < l(Bψ(vi−1, vi)).
By the Basic Tiling Lemma again, there is a child λ of µ such that the rectangle Bψ(λ)
has its top right corner located at the intersection of the left side of Bψ(vi−1, vi) and
ψ(vi). Clearly, λ corresponds to an edge of skel(µ) that is in the embedding E between
(vi−1, vi) and (vi, vi+1) in the clockwise order around vi. However, there is no such edge
in E , a contradiction. Similarly, for every i = 1, . . . , n− 1, we have

l(ψ(vi)) = l(Bψ(vi, vi+1)).

It follows that the left sides of the bounding boxes Bψ(v0, v1), . . . , Bψ(vn−1, vn) and the
left endpoints of ψ(v1), . . . , ψ(vn−1) are aligned to the same vertical line Lr(f).
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The proof of (2) is analogous. Property (3) is an immediate consequence of the Basic
Tiling Lemma.

The above lemma allows us to introduce the notion of a splitting line for every face
f in V (E∗); namely, the splitting line of f is: the line Ll(f) = Lr(f) if f is an inner face
of E , Lr(f) if f is the left outer face of E , and Ll(f) if f is the right outer face of E . Now,
let χ(f) be the x-coordinate of the splitting line for a face f in V (E∗). To show that χ(f)
is an st-valuation of E∗, note that for any edge (f, g) of E∗ there is an edge (u, v) of E
that has f on the left side and g on the right side. It follows that χ(f) = l(Bψ(u, v)) <
r(Bψ(u, v)) = χ(g), proving the claim. See Figure 2.6 for an illustration.

The representation ψ of G determines the triple (E , ξ, χ). Note that any other repre-
sentation with the same tiling τ = (Bψ(µ1), . . . , Bψ(µk)) of B(µ) gives the same triple.
To emphasize that the triple (E , ξ, χ) is determined by tiling τ , we write (Eτ , ξτ , χτ ).

Now, assume that E is an st-embedding of skel(µ), ξ is an st-valuation of E , and χ
is an st-valuation of the dual of E . Consider the function φ that assigns to every vertex
v of skel(µ) the bar φ(v) defined as follows:

yφ(v) = ξ(v),
lφ(v) = χ(left face of v),
rφ(v) = χ(right face of v).

Firstly, Tamassia and Tollis [73] showed that φ is a bar visibility representation of skel(µ)
and that for τ = (Bφ(µ1), . . . , Bφ(µk)), we have (Eτ , ξτ , χτ ) = (E , ξ, χ).

Secondly, there is a representation ψ ofG that agrees with τ on skel(µ), i.e., such that
τ = (Bψ(µ1), . . . , Bψ(µk)). To construct such a representation, we take any representa-
tion ψ of G, translate and scale all bars in ψ to get Bψ(µ) = Bφ(µ), and represent the
pertinent digraphs Gµ1 , . . . , Gµk so that the bounding box of µi coincides with Bφ(µi)
for i = 1, . . . , k.

The considerations given above lead us to the following lemma.

Lemma 2.9 (R-Tiling Lemma). Let µ be an R-node. There is a one-to-one correspondence
between the set

T = {(Bψ(µ1), . . . , Bψ(µk)) : ψ is a rectangular bar visibility representation of G}

of all possible tilings of the bounding box of µ by the bounding boxes of µ1, . . . , µk in all repre-
sentations of G and the set

T ′ =

(E , ξ, χ) :
E is an st-embedding of skel(µ),
ξ is an st-valuation of E ,
χ is an st-valuation of the dual of E .


2.4.2 Algorithm for rectangular bar visibility extension of planar st-graphs

Let G be a planar st-graph with n vertices and ψ′ be a partial representation of G with
the set of fixed vertices V ′. We present a quadratic-time algorithm that tests if there
exists a rectangular bar visibility representation ψ of G that extends ψ′. If such a repre-
sentation exists, then the algorithm can construct it in the same time.
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In the first step, our algorithm calculates yψ. Namely, the algorithm checks whether
yψ′ : V ′ → R is extendable to an st-valuation of G. When such an extension does not
exist, the algorithm rejects the instance (G,ψ′); otherwise any extension of yψ′ can be
used as yψ. The correctness of this step is verified by the following lemma.

Lemma 2.10. Suppose that ψ is a rectangular bar visibility representation of G that extends
ψ′.

1. The function yψ is an st-valuation of G that extends yψ′ ,

2. If y is an st-valuation of G that extends yψ′ , then the function φ that sends every vertex
v of G into a bar so that

yφ(v) = y(v), lφ(v) = lψ(v), rφ(v) = rψ(v)

is also a rectangular bar visibility representation of G that extends ψ′.

Proof. The function yψ extends yψ′ , because ψ extends ψ′. It is an st-valuation of G
because for an edge (u, v) of G, the bar of u is below the bar of v.

For the proof of (2), observe that for each vertex u ofGwe haveX(φ(u)) = X(ψ(u)).
We claim that for any two vertices u, v of G such that the interior of X(ψ(u))∩X(ψ(v))
is non-empty we have that yψ(u) < yψ(v) if and only if y(u) < y(v). For the proof of this
claim, let u and v be vertices of G such that the interior of X(ψ(u)) ∩ X(ψ(v)) is non-
empty. From the fact that ψ(V (G)) is a collection of pairwise disjoint bars, it follows
that yψ(u) 6= yψ(v). Without loss of generality assume that yψ(u) < yψ(v). The non-
empty interior of X(ψ(u))∩X(ψ(v)) means that there is a path from u to v in G. Hence
y(u) < y(v) as y is an st-valuation of G.

As a consequence we have that (x1, x2) × (yψ(u), yψ(v)) is a visibility gap between
bars ψ(u) and ψ(v) in representation ψ if and only if (x1, x2)× (y(u), y(v)) is a visibility
gap between φ(u) and φ(v) and φ is a rectangular bar visibility representation of G.

Clearly, checking whether yψ′ is extendable to an st-valuation of G, and construct-
ing such an extension can be done in O(n)-time. In the second step, the algorithm
computes the SPQR-tree T for G, which also takes linear time.

Before we describe the last step in our algorithm, we need some preparation. For
an inner node µ in T we define the sets V ′(µ) and C(µ) as follows:

V ′(µ) = the set of fixed vertices in V (Gµ) r {sµ, tµ},

C(µ) =


∅, if V ′(µ) = ∅;
the smallest axis aligned, closed rectangle that contains ψ′(u) for
all u ∈ V ′(µ), otherwise.

The set C(µ) is called the core of µ. For a node µ whose core is empty, our algorithm
can represent Gµ in any rectangle spanned between the poles of Gµ. Thus, we focus
our attention on nodes whose core is non-empty.

Assume that µ is a node whose core is non-empty. We describe the ‘possible shapes’
the bounding box of µ might have in a representation of G that extends ψ′. The bound-
ing box of µ is a rectangle that is spanned between the bars corresponding to the poles
of Gµ. By the Basic Tiling Lemma, if C(µ) is non-empty then B(µ) contains C(µ). For
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our algorithm it is important to distinguish whether the left (right) side of B(µ) con-
tains the left (right) side of C(µ). This criterion leads to four types of representations
of µ with respect to the core of µ.

The main idea of the algorithm is to decide for each inner node µ whose core is
non-empty, which of the four types of representation of µ are possible and which are
not. The algorithm traverses the tree bottom-up and for each node and each type of
representation it tries to construct the appropriate tiling using the information about
possible representations of its children. The types chosen for different children need
to fit together to obtain a tiling of the parent node. In what follows, we present our
approach in more detail.

Let µ be an inner node in T . Fix φ′ = ψ′|V ′(µ). It is convenient to think of φ′ as
a partial representation of the pertinent digraph Gµ obtained by restricting ψ′ to the
inner vertices of Gµ. In particular, φ′ is empty if the core of µ is empty. Let x, x′ be
two real values. A rectangular bar visibility representation φ of Gµ is called an [x, x′]-
representation of µ if φ extends φ′ and X(φ(sµ)) = X(φ(tµ)) = [x, x′].

A node µ whose core is empty has an [x, x′]-representation for any x < x′. In partic-
ular, a Q-node has an [x, x′]-representation for any x < x′.

We say that an [x, x′]-representation of an inner node µ whose core is non-empty is:

• left-loose, right-loose (LL-representation), when x < l(C(µ)) and x′ > r(C(µ)),

• left-loose, right-fixed (LF-representation), when x < l(C(µ)) and x′ = r(C(µ)),

• left-fixed, right-loose (FL-representation), when x = l(C(µ)) and x′ > r(C(µ)),

• left-fixed, right-fixed (FF-representation), when x = l(C(µ)) and x′ = r(C(µ)).

The next lemma justifies this categorization of representations. It says that if a rep-
resentation of a given type exists, then every representation of the same type is also
realizable.

Lemma 2.11 (Stretching Lemma). Let µ be an inner node whose core is non-empty. We have
that:

• If µ has an LL-representation, then µ has an [x, x′]-representation for any x < l(C(µ))
and any x′ > r(C(µ)).

• If µ has an LF-representation, then µ has an [x, x′]-representation for any x < l(C(µ))
and x′ = r(C(µ)).

• If µ has an FL-representation, then µ has an [x, x′]-representation for x = l(C(µ)) and
any x′ > r(C(µ)).

Proof. Let xl = l(C(µ)). Suppose that φ is some left-loose [x1, x
′]-representation of µ

with x1 < xl. For any x2 < xl we can obtain an [x2, x
′]-representation of µ by appropri-

ately stretching the part of the drawing of φ that is to the left of xl. If the representation
is right-loose, then we can arbitrarily stretch the part of the drawing that is to the right
of r(C(µ)).

The main task of the algorithm is to verify which representations are feasible for
nodes that have non-empty cores. We assume that:
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• µ is an inner node whose core is non-empty.

• µ1, . . . , µk are the children of µ, k > 2.

• λ1, . . . , λk′ are the children of µ with C(λi) 6= ∅, 0 6 k′ 6 k.

• θ(λi) is the set of feasible types of representations for λi,
θ(λi) ⊆ {LL,LF, FL, FF}.

We process the tree bottom-up and assume that θ(λi) is already computed and non-
empty.

Let x and x′ be two real numbers such that x 6 l(C(µ)) and x′ > r(C(µ)). We
provide an algorithm that tests whether an [x, x′]-representation of µ exists. We use it
to find feasible types for µ by calling it four times with appropriate values of x and x′.
While searching for an [x, x′]-representation of µ our algorithm tries to tile the rectangle
[x, x′] × [y(sµ), y(tµ)] with B(µ1), . . . , B(µk). The tiling procedure is determined by the
Tiling Lemma specific for the type of µ. Note that as the core of a Q-node is empty, the
algorithm splits into three cases: µ is an S-node, a P -node, and an R-node.

Case S. µ is an S-node. In this case we attempt to align the left and right sides of the
bounding boxes of the children of µ to x and x′ respectively. We also must have the
x-intervals of the bars of the cut vertices set to [x, x′].

Listing 2.1 Algorithm for series node

1 for each cut-vertex c in Gµ

2 if c ∈ V ′(µ) and X(ψ′(c)) 6= [x, x′]
3 return FALSE // fixed cut-vertex does not span [x, x′]
4 for i = 1 to k′

5 if l(C(λi)) > x and r(C(λi)) < x′ and LL /∈ θ(λi)
6 return FALSE // λi must stretch on both sides
7 if l(C(λi)) > x and r(C(λi)) == x′ and LF /∈ θ(λi)
8 return FALSE // λi must stretch only on the left side
9 if l(C(λi)) == x and r(C(λi)) < x′ and FL /∈ θ(λi)

10 return FALSE // λi must stretch only on the right side
11 if l(C(λi)) == x and r(C(λi)) == x′ and FF /∈ θ(λi)
12 return FALSE // λi must stretch on neither side
13 return TRUE

Claim 2.12. There exists an [x, x′]-representation of an S-node µ if and only if Algorithm 2.1
returns TRUE.

Proof. Claim follows directly from the Tiling Lemma for Series Nodes and the Stretch-
ing Lemma.

Case P. µ is a P -node. In this case we attempt to tile the rectangle [x, x′]× [y(sµ), y(tµ)]
by placing the bounding boxes of the children of µ side by side from left to right. The
order of children whose cores are non-empty is determined by the position of those
cores. We need to find enough space to place the bounding boxes of children whose
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cores are empty. Additionally, if (sµ, tµ) is an edge of G, then we need to leave at
least one visibility gap in the tiling for that edge. Otherwise, if (sµ, tµ) is not an edge
of G, we need to close all the gaps in the tiling. The tiling algorithm is presented as
Algorithm 2.2.

Listing 2.2 Algorithm for parallel node

1 sort λi’s by the value l(C(λi))
2 for i = 1 to k′

3 li = l(C(λi)), ri = r(C(λi)) // left- and right- endpoints of cores
4 r0 = x, lk′+1 = x′

5 closed = ∅ // set of closed gaps
6 for i = 0 to k′

7 if ri > li+1

8 return FALSE // cores overlap
9 if ri == li+1

10 closed = closed ∪ {i} // λi and λi+1 touch
11 if i > 0
12 θ(λi) = θ(λi) r {FL,LL} // use right-fixed rep. of λi
13 if i < k′

14 θ(λi+1) = θ(λi+1) r {LF,LL} // use left-fixed rep. of λi+1

15 if (k > k′ or (sµ, tµ) ∈ E(Gµ)) and |closed| == k′ + 1
16 return FALSE // there is no gap
17 for i = 1 to k′

18 if θ(λi) == ∅
19 return FALSE
20 if LL ∈ θ(λi)
21 closed = closed ∪ {i− 1, i} // close both gaps
22 else if i− 1 /∈ closed and LF ∈ θ(λi)
23 closed = closed ∪ {i− 1} // close left gap
24 else if FL ∈ θ(λi)
25 closed = closed ∪ {i} // close right gap
26 return (sµ, tµ) ∈ E(Gµ) or k − k′ >= k′ + 1− |closed| // can close all gaps

In line 1 the children whose cores are non-empty are sorted by the left end of the
core. In lines 2 to 5 the variables li, ri, and an empty set closed are initialized.

If there are λi, λj such that the interior of the set X(C(λi))∩X(C(λj)) is non-empty,
then we prove that there is no [x, x′]-representation ofGµ. Indeed, by the Tiling Lemma
for Parallel Nodes and by C(λi) ⊆ B(λi), the interior ofB(λi)∩B(λj) is non-empty and
hence tiling of B(µ) with B(µ1), . . . , B(µk) is not possible. Additionally, if r(C(λi)) =
l(C(λj)), then neither a right-loose representation of λi nor a left-loose representation
of λj can be used. These checks and restrictions are performed by the algorithm in
lines 6 to 14.

Let Qi = [ri, li+1]× [y(sµ), y(tµ)] for i ∈ [0, k′]. We say that Qi is an open gap (after λi,
before λi+1) if Qi has non-empty interior. In particular, if x = r0 < l1 (rk′ < lk′+1 = x′)
then there is an open gap before λ1 (after λk′). On the one hand, if there is an edge
(sµ, tµ) or there is at least one µi whose core is empty, then we need at least one open
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gap to construct an [x, x′]-representation. This condition is checked by the algorithm in
line 15. On the other hand, if (sµ, tµ) is not an edge of G then we need to close all the
gaps in the tiling. There are two ways to close the gaps. Firstly, the representation of
each child node whose core is empty can be placed so that it closes a gap. The second
way is to use loose representations for children nodes λ1, . . . , λk′ .

If θ(λi) = ∅ for some i = 1, . . . , k′, then an [x, x′]-representation of µ does not exist.
Assume that θ(λi) is non-empty for every i = 1, . . . , k′. Suppose that c is a function that
assigns to every λi a feasible type of representation from the set θ(λi). Whenever c(λi)
is right-loose or c(λi+1) is left-loose, we can stretch the representation of λi or λi+1, so
that it closes the gap Qi. In lines 17 to 25, the algorithm greedily closes as many gaps
as possible. The greedy strategy processes children λi’s from left to right and for each
child: closes both adjacent gaps if it can; it prefers closing the left gap if it is not yet
closed (this is the last bounding box that can close this gap) from the right gap.

If there are some open gaps left and (sµ, tµ) is not an edge of G, then each open gap
needs to be closed by placing in this gap a representation of one or more of the children
whose core is empty.

Claim 2.13. There exists an [x, x′]-representation of a P -node µ if and only if Algorithm 2.2
returns TRUE.

Proof. Claim follows by the Tiling Lemma for Parallel Nodes and the Stretching Lemma.
The correctness of the greedy strategy follows by a simple greedy exchange argu-
ment.

Case R. µ is anR-node. By the Tiling Lemma for Rigid Nodes, the set of possible tilings
of B(µ) by B(µ1), . . . , B(µk) is in correspondence with the triples (E , ξ, χ), where E is
a planar embedding of skel(µ), ξ is an st-valuation of E , and χ is an st-valuation of
E∗. To find an appropriate tiling of B(µ) (that yields an [x, x′]-representation of µ) we
search through the set of such triples. Since µ is a rigid node, there are only two planar
st-embeddings of skel(µ) and we consider both of them separately. Let E be one of
these planar embeddings. Since the y-coordinate for each vertex of G is already fixed,
the st-valuation ξ is given by the y-coordinates of the vertices from skel(µ). Now,
it remains to find an st-valuation χ of E∗, i.e., to determine the x-coordinate of the
splitting line for every face f of E . First, for every face f in V (E∗) we compute an initial
set of possible placements for the splitting line of f by taking into account the partial
representation φ′. If f is an inner face of E , then we have the following restrictions on
χ(f):

• If u is a fixed vertex on the left path of f , then χ(f) = r(u).

• If u is a fixed vertex on the right path of f , then χ(f) = l(u).

• If λ is a child of µ whose core is non-empty, and the virtual edge of λ is on the left
path of f , then χ(f) > r(C(λ)).

• If λ is a child of µ whose core is non-empty, and the virtual edge of λ is on the
right path of f , then χ(f) 6 l(C(λ)).
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We impose analogous conditions for the faces s∗ and t∗.
Let X ′(f) be a set of all χ(f) in [x, x′] that satisfy all the above conditions. If

X ′(f) = ∅ for some face f in V (E∗) or x /∈ X ′(s∗) or x′ /∈ X ′(t∗), then there is no
[x, x′]-representation of Gµ. Since we are looking for an [x, x′]-representation of Gµ, we
set X ′(s∗) = [x, x] and X ′(t∗) = [x′, x′] as the splitting line for s∗ (t∗) must be set to x (x′).

Now, we further restrict the possible values for χ(f) by taking into account the fact
that χ needs to be an st-valuation of E∗. For every two faces f and g in V (E∗):

• If g is to the left of f , then χ(f) > l(X ′(g)).

• If g is to the right of f , then χ(f) < r(X ′(g)).

Let X (f) be the set of all χ(f) such that χ(f) ∈ X ′(f) and that satisfy the above condi-
tions. If X (f) is empty for some face f in V (E∗), then there is no [x, x′]-representation
of Gµ. We assume that X (f) is non-empty for every f in V (E∗). One can easily verify
the following claim.

Claim 2.14.

1. For every face f in V (E∗), X (f) is an interval in [x, x′],

2. For every two faces f and g such that f is to the left of g, we have that:

• l(X (f)) 6 l(X (g)) and if l(X (f)) = l(X (g)) then X (g) is open from the left side.

• r(X (f)) 6 r(X (g)) and if r(X (f)) = r(X (g)) then X (f) is open from the right
side.

A face f in V (E∗) is determined if X (f) is a singleton (i.e., the location of the splitting
line of f is already fixed); otherwise f is undetermined.

In what follows, we construct a 2-CNF formula Φ that is satisfiable if and only if an
[x, x′]-representation of µ exists.

Variables of Φ. For every child λ of µ whose core is non-empty, we introduce two
Boolean variables: lλ and rλ, which have the following interpretation:

• The true (false) value of variable lλ means that we use left-loose (left-fixed) rep-
resentation of node λ.

• The true (false) value of variable rλ means that we use right-loose (right-fixed)
representation of node λ.

For every inner face f of E we introduce two Boolean variables: lf and rf , which have
the following interpretation:

• The variable lf is true when the splitting line of f is set strictly to the right of
l(X (f)). It is false when χ(f) = l(X (f)).

• The variable rf is true when the splitting line of f is set strictly to the left of
r(X (f)). It is false when χ(f) = r(X (f)).
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In particular, if X (f) is open from the left (right) then lf (rf ) is true. When f is deter-
mined then both lf and rf are false.

For the left outer face s∗ and the right outer face t∗ we introduce variables rs∗ and
lt∗ . Since s∗ and t∗ are determined, the corresponding variables are always set to false.

Clauses of Φ. We split the clauses of Φ into four types.

Type I. Clauses of this type propagate the information about the possible representa-
tion types of the children of µ.

• For every child λ with non-empty core and for every type of representation of λ
which is not feasible, we add a clause that forbids using representation of this
type. For example, when there is no left-loose, right-fixed representation of λ we
add a clause ¬(lλ ∧ ¬rλ) = (¬lλ ∨ rλ) to Φ.

Type II. Clauses of this type enforce the meaning of variables lf and rf for every face f
in V (E∗).

• For every determined inner face f , we add the clauses (¬lf ) and (¬rf ), and for s∗

and t∗ we add the clauses (¬rs∗) and (¬lt∗).

• For every undetermined inner face f , we add the clause (lf ) if X (f) is open from
the left side, and (rf ) if X (f) is open from the right side. If X (f) is closed from
the left and closed from the right side, we add the clause (lf ∨ rf ) as the splitting
line of f cannot be placed in both endpoints of X (f) simultaneously.

Type III. Clauses of this type enforce a ‘proper tiling’ of every face f in V (E∗) (see Face
Condition Lemma). This ensures that the bounding boxes associated with the left path
and the right path of f can be aligned to the splitting line of f .

• For every face f and for every node λ on the left path of f with a non-empty core:

– We add the clause (lf ⇒ rλ).

– If r(C(λ)) < l(X (f)), we add the clause (rλ).

– If r(C(λ)) = l(X (f)), we add the clause (¬lf ⇒ ¬rλ).

The clause (lf ⇒ rλ) asserts that whenever the splitting line of f is set to the right of
l(X (f)), then a right-loose representation of λ is necessary to align the bounding box
of λ to the splitting line of f . The two remaining clauses have similar meaning.

We add analogous clauses for the nodes whose cores are non-empty and that cor-
respond to the edges from the right path of f .

Type IV. Clauses of this type enforce that the x-coordinates of the splitting lines form
an st-valuation of E∗.

• For every pair of faces f and g in V (E∗) such that f is to the left of g and such that
r(X (f)) > l(X (g)), we add the clause (¬rf ⇒ lg).

Such a clause forbids setting χ(f) = r(X (f)) and χ(g) = l(X (g)) – such an assignment
of χ(f) and χ(g) would not be a valid st-valuation.



44 The Partial Visibility Representation Extension Problem

Claim 2.15. Let µ be an R-node, E be a planar embedding of the skeleton of µ. There exists
an [x, x′]-representation of µ that corresponds to a planar embedding E if and only if Φ is
satisfiable.

Proof. Suppose that φ is an [x, x′]-representation of µ. For every face f in V (E∗), the
splitting line χ(f) of f in φ satisfies χ(f) ∈ X (f). Thus, χ(f) determines the following
assignment for lf and rf :

• lf is true if and only if χ(f) > l(X (f)),

• rf is true if and only if χ(f) < r(X (f)).

For every child λ of µ such that C(λ) 6= ∅we set the variables lλ and rλ as follows:

• lλ is true if and only if λ is left-loose in φ,

• rλ is true if and only if λ is right-loose in φ.

One can easily check that this assignment satisfies Φ.
Suppose now that Φ is satisfiable. We define an [x, x′]-representation φ of µ by

setting a splitting line χ(f) for every face f in V (E∗). To conclude that φ is an [x, x′]-
representation it is enough to check that:

1. The function χ is an st-valuation of E∗.

2. For every fixed vertex u we have that

lφ(u) = χ(left face of u) and rφ(u) = χ(right face of u).

3. For every child λ of µ such that C(λ) 6= ∅we have that

Gλ has an [χ(left face of λ), χ(right face of λ)]-representation.

First, we define χ(f) = l(X (f)) when lf is false. We also set χ(f) = r(X (f)) when
rf is false. Note that this definition is unambiguous as both lf and rf are false only for
a determined face f by the fact that the clauses of Type II are satisfied. By Claim 2.14
and by the fact that the clauses of Type IV are satisfied, for any two faces f and g in
V (E∗) for which χ(f) and χ(g) are already fixed, we have χ(f) < χ(g) whenever f is to
the left of g. Notice that χ(f) is not yet determined for inner faces f for which lf and rf
are true. For such a face f , let X ′′(f) contain all values z such that:

• χ(g) < z whenever g is a face to the left of f and the value χ(g) is already fixed,
and

• z < χ(h) whenever h is a face to the right of f and the value χ(h) is already fixed,
and

• l(X (f)) < z < r(X (f)).
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We claim that X ′′(f) is an open, non-empty interval. Indeed, if X ′′(f) is empty, then
there are faces g and h with the values χ(g), χ(h) fixed such that g is to the left of h and
χ(g) > χ(h), which contradicts our previous observation that if a face is to the left of
another face and splitting lines are determined for both of them, then the splitting line
of the first face is to the left of the splitting line of the second face.

Moreover, for any two faces f1, f2 such that f1 is to the left of f2 and neither χ(f1)
nor χ(f2) is fixed, we have that l(X ′′(f1)) 6 l(X ′′(f2)) and r(X ′′(f1)) 6 r(X ′′(f2)). Thus,
for every face f for which both lf , rf are true, we can choose a value χ(f) fromX ′′(f) so
that χ is an st-valuation of E∗. We need to check the remaining conditions (2) and (3).
Condition (2) is satisfied since, for a determined face f we have chosen χ(f) from
the singleton X (f). Condition (3) follows from the fact that the clauses of Type I and
Type III are satisfied, and by the Stretching Lemma.

2.4.2.1 Complexity considerations

To compute the feasible representation for a node µ with k children, our algorithm
works in O(k)-time if µ is an S-node. Algorithm 2.2 for a P -node µ needs to sort
the children of µ and thus, it works in O(k log k)-time. For an R-node, the number of
clauses of Types I, II and III is O(k). The number of clauses of Type IV is O(k2) and for
some graphs, it is quadratic. Thus, the algorithm works in O(k2) time for an R-node.
Since the number of all edges in all nodes of T is O(n), the whole algorithm works in
O(n2) time.

2.4.3 Faster algorithm

The bottleneck of the algorithm presented in Section 2.4.2 is the number of clauses of
Type IV in the 2-CNF formula constructed for R-nodes. In the presented algorithm
we add one clause (¬rf ⇒ lg) for any two faces f and g in V (E∗) such that f is to the
left of g and r(X (f)) > l(X (g)). The number of such pairs of faces can be quadratic.
In this section we present a different, less direct, approach that uses a smaller number
of clauses to express the same set of constraints.

We can treat the planar st-graph E∗ as a planar poset with a single minimal and
a single maximal element. Using the result by Baker, Fishburn and Roberts [6] we
know that such a poset has dimension at most 2. Thus, there are two numberings p
and q of the vertices of E∗ such that a face f is to the left of a face g if and only if
p(f) < p(g) and q(f) < q(g). Such numberings correspond to dominance drawings of
planar st-graphs and can be computed in linear time [29].

For each face f , we have two Boolean variables lf and rf , two real values λf =
l(X (f)), %f = r(X (f)), and two integer values pf = p(f) and qf = q(f). We want
to introduce a small set of 2-CNF clauses that implies (¬lg ⇒ rf ) whenever pf < pg,
qf < qg, and %f > λg.

To give an intuition for our approach, consider the simpler problem of determining
for every face f the number of faces g such that pf < pg, qf < qg, and %f > λg. This
is a three-dimensional range counting query problem and can be solved in O

(
n log3 n

)
time using range trees, as described in Chapter 5 of [7].

It can also be solved in O
(
n log2 n

)
time using the following sweep line algorithm.

First, we setup a dynamic data structure for two-dimensional range counting queries.
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Then, we process faces, one by one, in order of increasing values of p. After processing
each face h, we add the point (qh, %h) to the structure. To compute the answer for a face
h, we ask the structure for the number of points (x, y) such that x < ph and y > λh.

Now we give an overview of our approach to the original problem of creating
a small set of 2-CNF clauses. Our algorithm is a sweep line algorithm that resem-
bles the one described above. In particular, we use a data structure similar to a two-
dimensional range tree, that is simply a set of persistent balanced binary search trees,
each with %f as the sorting key. During the course of the sweep, we create additional
Boolean variables corresponding to the vertices of the trees and implications corre-
sponding to their edges. The algorithm executes O(n) queries against the structure,
each of the queries takes O

(
log2 n

)
time. As a result, both the maximal size of the

structure and the total running time amount to O
(
n log2 n

)
. The algorithm produces

O
(
n log2 n

)
2-CNF clauses that correspond to the edges of the search trees and the con-

trol flow of the queries.
For an overview of persistent data structures, refer to [31]. However, we only need

the ideas presented in [64], which are summarized in this paragraph. The tree structure
used in our algorithm is a modification of the AVL tree. A node α of the tree stores
a pointer to its left child left(α), a pointer to its right child right(α) and the sorting
key key(α). The parent links are purposefully not stored – AVL trees can easily be
implemented without them and we must not store them for the persistent approach to
work. The difference from regular AVL trees is that no node is ever modified. Let A
be the set of all vertices that the insertion procedure would modify, together with all
of their ancestors. It is a known property of AVL trees that |A| is logarithmic in the
number of vertices of the tree. In a persistent AVL tree, instead of modifying nodes in
A, we perform the modifications on their copies – we create a new node C(α) for every
α ∈ A and set key(C(α)) = key(α).

This way, each addition to the tree introduces a logarithmic number of new nodes.
After each addition, we get a new root node, that represents the new tree, the old tree
is represented by the previous root and all but a logarithmic number of the nodes are
shared by both trees. The graph of old and new nodes together with edges from nodes
to their children is an acyclic digraph.

Now, in our algorithm, each tree keeps some set of Boolean variables rf sorted by
the value of %f . More specifically, with every vertex α we associate a Boolean variable
var(α). To add a variable rf into the tree we add a new node α with key(α) = %f and
var(α) = rf . Additionally, with each node α of the tree we associate a second Boolean
variable var′(α) and for each child node β we add a clause (var′(α)⇒ var′(β)). Finally,
for each node α we add a clause (var′(α)⇒ var(α)).

To simplify the presentation, assume that we have n = 2k faces. Let numberings p
and q take values 0, . . . , n − 1. We construct the 2-CNF formula in the following way.
First, for each interval of integers [j · 2i, (j + 1) · 2i), 0 6 i 6 k, j < n

2i
we have one

persistent balanced binary search tree. The tree for the interval [a, b) is going to keep
variables rf for faces f such that qf ∈ [a, b).

We process faces, one by one, in order of increasing values of p. After processing
each face f , we add the variable rf to all trees [a, b) such that qf ∈ [a, b). There are k+ 1
such trees and an addition to each tree takesO(log n) time and introducesO(log n) new
Boolean variables.
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This way, when we process face g, then any earlier processed face f satisfies pf < pg
and no other face satisfies this condition. Now, for any value qg we can select a log-
arithmic size subset S of the trees such that the union of the intervals of the trees is
exactly [0, qg). The variables rf stored in these trees are exactly the variables for faces
that satisfy both pf < pg and qf < qg. This is exactly the set of faces that are to the left
of the face g.

Each tree in S stores variables rf sorted by %f . We can execute a binary search for the
left-most node with the key no smaller than λg. During the search, when we descend
from an inner node α to the left child or when α is the final node of the search, we add
clauses (¬lg ⇒ var′(right(α)) and (¬lg ⇒ var(α)). The first implication is forwarded
over the tree to all nodes in the right subtree. This way, after completing the search, we
have that ¬lg implies rf for all faces f such that pf < pg, qf < qg and %f > λg – exactly
as intended.

The total running time of this procedure is O
(
n log2 n

)
and it produces at most that

many variables and clauses. This leads to the following.

Theorem 2.3. The Rectangular Bar Visibility Representation Extension Problem for a planar
st-graph with n vertices can be solved in O

(
n log2 n

)
time.

2.5 Hardness results

In this section we show two hardness results. In the first subsection we show that the
bar visibility extension problem for planar graphs is NP-complete. Then, we show
that the bar visibility extension problem for directed graphs is NP-complete when
restricted to grid representations.

2.5.1 Representations of undirected graphs

Theorem 2.1. The Bar Visibility Representation Extension Problem is NP-complete.

Proof. It is clear that the bar visibility representation extension problem is in NP. To
prove completeness, we present a reduction from PLANARMONOTONE3SAT. Given
a formula φ we construct a graph G, a subset V ′ of vertices of G, and a representation
ψ′ of V ′ that is extendable to a representation of the whole G if and only if φ is satis-
fiable. The vertex v is fixed when v ∈ V ′, otherwise v is unrepresented. The reduction
constructs a planar Boolean circuit that simulates the formula φ. The bars assigned to
fixed vertices of G create wires and gates of the circuit. Unrepresented vertices of G
correspond to Boolean values transmitted over the wires. Our construction uses sev-
eral Boolean gates: a NOT gate, a XOR gate, a special gate which we call a CXOR gate,
and an OR gate.

In the figures illustrating this proof, the red bars denote the fixed vertices of G
and the black bars denote the unrepresented vertices. A bar may have its left (right)
endpoint marked or not depending on whether the bar extends to the left (right) of
the figure or not. The figures also contain some vertical ranges. These ranges are only
required for the description of the properties of the gadgets.

For readability, the figures contain only schemes of previously defined gadgets.
Whenever a scheme appears in a figure, its area is colored gray.
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Figure 2.7: Wire transmitting true value (on the left) and false value (on the right)
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Figure 2.8: The NOT gadget depicted by its two possible representations and their schemes

Each wire, see Figure 2.7, in the circuit is an empty space between two fixed vertices,
> and ⊥, whose bars are placed one above the other. One unrepresented vertex v,
that is adjacent to both > and ⊥, corresponds to the value transmitted over the wire.
The construction of the gates ensures that in each wire there are exactly two disjoint
rectangular regions and v needs to be placed in one of them. In the figures, the small
horizontal lines with a dotted line between them are used to mark those regions and
are not part of the construction. Placement of v anywhere in the top (bottom) region
corresponds to a transmission of a true (false) value. We show a collection of gadgets
for the gates that use such wires as inputs, and outputs. Similarly to wires, each gate
is bounded from the top and bottom by two bars. This way, it is easy to control the
visibility between bars from different gates and wires.

NOT Gadget. Figure 2.8 presents a NOT gate and its scheme. An unrepresented vertex
x (y) can transmit the value in the wire that can be placed to the left (right) from the
gate. Both bars a and b are adjacent to each other, adjacent to vertices x and y, and not
adjacent to the bounding bars. As a and b don’t have any other neighbors, the only
way to obstruct the visibility gap between a, b and bounding bars is to use x and y.
Thus, one of x or y is placed below a and b, and the other is placed above a and b. This
way we obtain a desired functionality of a NOT gate. As the visibility between every
two bars does not change across the two representations, the corresponding edges of
G are well defined.

XOR Gadget. Figure 2.9 presents a XOR gate. It checks that the inputs x1 and x2 have
different Boolean values. It also produces outputs y1 and y2. The partial representation
is extendable if and only if x1 = ¬x2 = ¬y1 = y2.

To see that, observe that the visibility gap between b and > needs to be obstructed
and b has only two neighbors x1 and y1. Assume that y1 blocks the visibility between
b and >. Now x1 needs to block the visibility between b and the other bars. Thus, x1



2.5. Hardness results 49

>

y1
bx1

x2
a

y2

⊥ ⊥

>

a

b

x2

x1

y2

y1

XOR
x2

x1

y2

y1

⊥

>

a

b

x1

x2

y1

y2

XOR

x1

x2

y1

y2

Figure 2.9: The XOR gadget depicted by its two possible representations and their schemes.
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Figure 2.10: The CXOR gadget depicted by the schemes for its two possible representations.

is placed below b. The only other neighbor of x1 is x2 and thus, it needs to go above a.
The last unrepresented vertex is y2 and it needs to obstruct the visibility gap between
a and ⊥.

The other possibility is that x1 blocks visibility between b and >. The analysis of
this case is symmetric to the previous one and gives the second possible valuation of
the variables.

Finally, note that the visibility between every two bars does not change across the
two representations and the corresponding edges of G are well defined.

CXOR Gadget. Figure 2.10 presents a CXOR circuit. It checks that the inputs x1 and x2
have different Boolean values and produces copies y1 and y2 of the inputs. The CXOR
construction combines the XOR gate and two NOT gates in order to obtain a circuit
that checks that x1 = ¬x2, y1 = x1 and y2 = x2.

Variable Gadget. Using NOT gates and CXOR circuits it is easy to construct a variable
gadget. Figure 2.11 presents a gadget that gives two wires with value x to the right
side, and two wires with value ¬x to the left side. If we need k copies of a variable,
we simply stack 2k − 1 NOT gates one on another, and add CXOR gates to check the
consistency of the outputs produced by every second NOT gate.

All we need to finish the construction of our building blocks is a clause gadget that
checks that at least one of three wires connected to it transmits a true value.
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Figure 2.11: On the left: the gadget for the variable x with two output slots and one of its possible
representation for the false value of x. On the right: schemes of the gadget for the false and the true
value of x, respectively.
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Figure 2.13: The construction for a clause l1 ∨ l2 ∨ l3 and its representation for the false value of l1 and l2
and the true value of l3.

OR Gadget and Clause Gadget. Figure 2.12 presents an OR gate that has two inputs
x1 and x2 and one output y.

The output value can be true only if at least one of the inputs is true. In each of
these three scenarios y can be represented in the higher of its regions. See Figure 2.12
for these three representations. Now, consider a representation of the gadget where
both x1 and x2 are false. Observe that x1 and b are neighbors and we have that r(x1) >
l(b) = l(a). Vertices x1 and a are not adjacent and x2 is represented below a. The only
other bar that can block the visibility gap between a and x1 is y. Therefore, y is placed
in the lower of its regions, as it needs to be below x1.

Combining two OR gates and two bars that ensure that the output of the second
gate is true, we get a clause gadget presented in Figure 2.13.

Given an instance φ of PLANARMONOTONE3SAT (together with a rectilinear planar
representation of φ), we show how we construct the graph G with a partial representa-
tion ψ′. We rotate the rectilinear representation by 90 degrees. Now, we replace vertical
segments representing variables of φ with variable gadgets and vertical segments rep-
resenting clauses of φ with clause gadgets. Finally, for each occurrence of variable x in
clause C, we replace the horizontal connection between the segment of x and the seg-
ment of C by a wire connecting the appropriate gadgets. The properties of our gadgets
assert that φ is satisfiable if and only if ψ′ is extendable to a bar visibility representation
of G.

2.5.2 Grid representations

In this section we consider the following problem:
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Figure 2.14: The graph G, partial representation ψ′, graph Hi, and the representation ψ of Hi with
minimum width.

Grid Bar Visibility Representation Extension for directed graphs:

Input: (G,ψ′), where G is a directed graph and ψ′ is a mapping assigning bars to some
subset V ′ of V (G).
Question: Does G admit a grid bar visibility representation ψ with ψ|V ′ = ψ′?

In what follows we show that the above problem is NP-complete. The proof is
generic and can be easily modified to work for other grid representations including
undirected, rectangular directed/undirected, and even other models of visibility.

Theorem 2.16. Grid Bar Visibility Representation Extension Problem is NP-complete.

Proof. We use the 3PARTITION problem to show NP-hardness. Consider an instance
w, a1, . . . , a3m of the 3PARTITION problem. Let W =

∑3m
j=1 aj , i.e., W = mw. From

this instance of 3PARTITION, we create a graph G and a partial representation ψ′ that
assigns bars to a subset V ′ of V (G). These are constructed as follows and depicted in
Figure 2.14.

The graph G is constructed as follows. We start with G′ which is a K2,m+1 with
source s and sink t as the two vertices of degreem+1 and the other vertices are labeled
u0, . . . , um. Now, for each i = 1, . . . , 3m, create a planar st-graphHi which is aK2,ai with
source si and sink ti as its two vertices of degree ai. We remark that the width of any
visibility representation of Hi in the integer grid is at least ai. Finally, the graph G is
obtained by attaching each Hi to G′ by adding the edges (s, si) and (ti, t).

For the fixed bars, we let V ′ = {s, t, u1, . . . , um+1} and we define a bar ψ′(v) for each
element v ∈ V ′.

yψ′(v) =


0 v = s
2 v = ui
4 v = t

lψ′(v) =

{
0 v = s, t
iw + i v = ui

rψ′(v) =

{
W +m+ 1 v = s, t
iw + i+ 1 v = ui

Observe that the distance between the right-end of ψ′(ui) and the left-end of ψ′(ui+1) is
exactly w.
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We now claim that there is a solution for input (G,ψ′) if and only if the 3PARTI-
TION instance {w, a1, . . . , a3m} has a solution. First, we consider a collection of triples
T1, . . . , Tm which form a solution of the 3PARTITION problem. We extend ψ′ to a visi-
bility representation of G where, for each triple Tj = {aj1 , aj2 , aj3}, we place visibility
representations of Hj1 , Hj2 , Hj3 in sequence left-to-right and between the fixed bars
ψ′(uj−1) and ψ′(uj). Notice that this is possible since aj1 +aj2 +aj3 = w and the distance
from the right-end of ψ′(uj−1) to the left-end of ψ′(uj) is w.

To show that any visibility representation ψ of G which extends ψ′ provides a solu-
tion to the 3PARTITION problem we make the following observations. First, due to the
the placement of the bars ψ′(s), ψ′(t), ψ′(u0) and ψ′(um), the outer face of the resulting
embedding is s, u0, t, um. In particular, the bars of every Hi occur strictly within the
rectangle enclosed by ψ′(s) and ψ′(t). Thus, each Hi must also be drawn between some
pair of bars ψ′(uj−1), ψ′(uj) (for some j ∈ {1, . . . ,m− 1}). Second, due to each ai being
between w

4
and w

2
and the width of a visibility representation of Hi being at least ai, at

most threeHi’s ‘fit’ between the fixed bars ψ′(uj−1) and ψ′(uj). Thus, since there are 3m
Hi’s, every ψ′(uj−1), ψ′(uj) has exactly three Hi’s between them. Moreover, if Hi1 , Hi2

and Hi3 are placed between ψ′(uj−1) and ψ′(uj), then ai1 + ai2 + ai3 6 w. Thus, in ψ, the
gaps between each pair ψ′(uj−1), ψ′(uj) must contain precisely three Hi’s whose sum
of corresponding ai’s is w, i.e., the gaps correspond to the triples of a solution of the
3PARTITION problem.

2.6 Open problems

The main problem left open is to decide whether there exists a polynomial-time al-
gorithm that checks whether a partial representation of a directed planar graph is ex-
tendable to a bar visibility representation of the whole graph. Although we showed an
efficient algorithm for the case of planar st-graphs, it seems that some additional ideas
are needed to resolve this problem in general.

Some further open problems concern extension problems for the weak and strong
visibility models.

2.6.1 Weak visibility

Tamassia and Tollis [73] showed that every planar graph admits a weak visibility rep-
resentation. Nevertheless, the problem of extending a partial representation of a planar
graph to a weak visibility representation is NP-complete [17].

Di Battista and Tamassia [27] showed that a directed planar graph G admits a weak
visibility representation if and only if G admits an upward planar drawing. The latter
problem is NP-complete [42], so the problem of extending partial weak visibility rep-
resentations for planar digraphs is also NP-complete. Nevertheless, we do not know
whether there is an efficient algorithm if we assume that an upward planar drawing of
a planar digraph is given on the input.

2.6.2 Strong visibility

Due to Andreae [4], the recognition of planar graphs that admit a strong visibility
representation is NP-complete. It follows that the problem of testing whether a partial
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representation of a planar graph is extendable to a strong visibility representation is
also NP-complete. Nevertheless, we do not know if there exists an efficient algorithm
that tests whether a partial representation of a planar digraph is extendable to a strong
representation of the whole graph. It seems that some of our results on the bar visibility
model can be adjusted to the strong visibility model.



3
Complexity of minimizing the number
of intersecting edges in perfect bipartite matchings

In 2014, Yamanaka et al. [76] introduced TOKEN SWAPPING – a problem, in which we
are given a graph, whose every vertex contains a token. Each token has a different
destination vertex. In one turn, it is allowed to swap tokens on two adjacent vertices.
The goal is to bring all tokens to their destinations in the smallest number of turns.

Two generalizations of the problem were also considered. In the first one, presented
in [76] and called COLORED TOKEN SWAPPING, tokens and vertices have colors and the
goal is to finally move each token to a vertex of the same color. Note that TOKEN SWAP-
PING corresponds to COLORED TOKEN SWAPPING, where for each used color there is
exactly one vertex and exactly one token of this color. In the second generalization,
introduced by Bonnet, Miltzow and Rzążewski [12] and called SUBSET TOKEN SWAP-
PING, every token is assigned a set of destination vertices and is required to reach any
of them. Note here that COLORED TOKEN SWAPPING is a special version of SUBSET
TOKEN SWAPPING with sets assigned to different tokens either equal or disjoint.

The decision version of the TOKEN SWAPPING problem was shown to be NP-
complete by Miltzow, Narins, Okamoto, Rote, Thomas and Uno [62]. This means that
both its generalizations are NP-complete as well. A precise analysis of the complex-
ity of all three token swapping problems on special graphs has been done in [12]. In
particular, SUBSET TOKEN SWAPPING was shown to be NP-complete on trees, cliques
and stars. However, in the first draft of [12]1 its status has been left completely open
on paths. The final version of [12] refers to our proof of NP-completeness of SUBSET
TOKEN SWAPPING on paths, first published in [45]2.

In case of paths, SUBSET TOKEN SWAPPING has been equivalently restated by Milt-
zow [61] to be read:

CROSSING-MINIMIZING MATCHING:
Input: • a bipartite graph G = (V1, V2, E(G)) that admits a perfect matching,

• a linear order <1 of V1,
• a linear order <2 of V2, and
• a nonnegative integer k.

Question: Does G admit a perfect matching M ⊆ E(G) with at most k crossings,
i.e. pairs of edges {u1, u2} , {v1, v2} ∈M , such that u1 <1 v1 and v2 <2 u2?

1 See [11].
2 Next, this NP-completeness proof, together with parametrized algorithms in this and other set-

tings, was included in [1].
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For any perfect matching M in G (with fixed orders <1 and <2), we denote the
number of crossings in M by #cr(M).

The proof of NP-completeness for CROSSING-MINIMIZING MATCHING (and, in con-
sequence, of SUBSET TOKEN SWAPPING restricted to paths) is presented both in our
paper [45] as well as in this chapter.

We interpret the orders <1 and <2 by placing the vertices of V (G) = V1 ∪ V2 on two
different horizontal lines in the plane: vertices in V1 and V2 are represented by different
points respectively in the upper and lower line, and are ordered by <1 and <2 from
the left to the right. Each edge is represented by a corresponding line segment. An
example of this geometric interpretation is given in Figure 3.1.

a1 b1 c1 d1

a2 b2 c2 d2

Figure 3.1: A bipartite graph G with V1 = {a1, b1, c1, d1}, V2 = {a2, b2, c2, d2}, edges {a1, b2}, {b1, a2},
{c1, c2}, {d1, b2}, {d1, d2}, and orders a1 <1 b1 <1 c1 <1 d1, a2 <2 b2 <2 c2 <2 d2.

We prove the NP-completeness of SUBSET TOKEN SWAPPING on paths by showing
the following:

Theorem 3.1. CROSSING-MINIMIZING MATCHING is NP-complete, even for graphs of max-
imum degree 2.

Proof. It is obvious that our problem is in NP, so that we are left with its NP-hardness.
To start with, we restate an instance (H, l) of VERTEX COVER as an appropriate instance
(G,<1, <2, k) of CROSSING-MINIMIZING MATCHING in logarithmic space. This in turn
requires two kinds of gadgets. A gadget of the first kind is created for every vertex
of H , while a gadget of the second kind is created for every edge of H . Vertex gadgets
are aligned in such a way that there are no crossings between them, but each of them
defines regions between the vertices, called slots, that are used to anchor edge gadgets.
The details of the construction ensure that H admits a vertex cover of size at most l
if and only if G admits a perfect matching with at most k crossings. The heart of the
argument is a careful analysis of the number of crossings between different gadgets.

For any v ∈ V (H), the vertex gadget for v is a cycle on 16 · deg(v) vertices together
with an isolated edge, ordered as shown in Figure 3.2. There are two possible perfect
matchings in each vertex gadget: either containing all the blue edges and the isolated
edge in the middle, or all the yellow edges and the isolated one.

The vertex gadget defines 4 · deg(v) slots, i.e. spaces between the vertices, whose
exact location is marked in Figure 3.2 with gray rectangles. The 2 · deg(v) slots to the
left of the isolated edge are called left slots and the other ones are called right slots. We
arbitrarily assign to every edge e ∈ E(H) incident to v two consecutive right slots IRe

v,
ORe

v such that IRe
v is to the left of ORe

v (here IR and OR stand for inner right and outer
right, respectively). We also assign to e two consecutive left slots OLev, ILev (outer left
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IRevILfv ORevOLfv IRfvILev ORfvOLev

Figure 3.2: A vertex gadget for a vertex v of degree 2 in H , incident to edges e and f , with a possible
assignment of slots to these edges.

and inner left), but this time ILev is to the right of OLev. Thus, the inner slots of the edge
e are closer to the isolated edge than the outer slots. We also make sure that different
edges of H get disjoint sets of 4 slots. The fact that there are 2 · deg(v) left and 2 · deg(v)
right slots makes such an assignment possible.

We fix an arbitrary linear order v1, . . . , vn on the vertices ofH . We arrange the vertex
gadgets on the two horizontal lines in such a way that each gadget occupies a separate
rectangle between these lines and for every i < j, the gadget for vi is to the left of the
gadget for vj (see Figure 3.3).

v1

v2

v3

v1 v2 v3

Figure 3.3: A graph H with vertices linearly ordered and an alignment of vertex gadgets for the vertices
of H on the two horizontal lines.

For any edge e = {vi, vj} ∈ E(H) with i < j, the edge gadget for e is a cycle on 6 ver-
tices that are labeled and ordered as shown in Figure 3.4. These vertices are carefully
placed in the aforementioned slots as follows:

• vertices a and b in the slot IRe
vi

,

• vertex c in the slot ORe
vi

,

• vertex d in the slot OLevj ,

• vertices e and f in the slot ILevj .

IRevi ORevi OLevj ILevj

b

a

c

d e

f

Figure 3.4: The edge gadget for edge e = {vi, vj} ∈ E(H) and the placement of its vertices in slots of
vertex gadgets for vi and vj .
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Just like the vertex gadget, the edge gadget admits exactly two perfect matchings:
the green one and the red one.

This concludes the construction of the bipartite graph G together with orders <1

and <2. We leave k to be determined later in the proof. An example of this reduction
for a small graph is shown in Figure 3.5.

v1 v2 v3 v4

v1 v2 v3 v4

Figure 3.5: A graph H and a possible graph G with orders <1 and <2 obtained by passing H to the
reduction algorithm, vertex gadgets presented schematically.

Note that the gadgets are pairwise disjoint graphs and any perfect matching M in
G can be viewed as a sum of matchings chosen in each of the gadgets independently.

We interpret the choice of perfect matchings in all vertex gadgets as a selection of
a subset of V (H). For every vertex v ∈ V (H), the perfect matching in the gadget for
v containing blue edges corresponds to selecting v into the cover, whereas the other
perfect matching is interpreted as not selecting v. For a perfect matching M in G, we
denote the set of selected vertices by S(M).

Observe that a vertex cover S of H leads to an orientation of H in which each edge
is oriented towards an element of S. Of course, there can be many such orientations
for a single vertex cover S. For an S ⊆ V (H) and an orientation ~H of H with each edge
oriented towards an element of S, we say that ~H is a covering orientation for S.

In our reduction, the choice of perfect matchings in all edge gadgets corresponds
to an orientation of H that may, or may not, be covering for S(M). For every edge e =
{vi, vj} ∈ E(H) with i < j, the green perfect matching corresponds to orienting e
towards vi, and the red perfect matching orients e towards vj . For a perfect matching
M in G, we denote this orientation by ~H(M).

Note that for any S ⊆ V (H) and for any orientation ~H of H , by choosing appro-
priate perfect matchings in vertex and edge gadgets, we can obtain a (unique) perfect
matching M in G such that S(M) = S and ~H(M) = ~H .

We established a one-to-one correspondence between perfect matchings in G and
pairs of the form (S, ~H), where S is an arbitrary subset of V (H) and ~H is an arbitrary
orientation of H . Now, we aim to prove that for a perfect matching M with #cr(M)

being minimal, the details of the construction ensure that ~H(M) is a covering orienta-
tion for S(M), and thus S(M) is a vertex cover of H . Moreover, we will set k so that
for #cr(M) 6 k we will have |S(M)| 6 l. Conversely, we will show that for any ver-
tex cover S of H with |S| 6 l and a covering orientation ~H , the perfect matching M
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in G with S(M) = S and ~H(M) = ~H admits at most k crossings. Proving these facts
requires a detailed analysis of the number of crossings in a perfect matching in G.

We start our analysis by fixing a perfect matching M in G. We split #cr(M) into
3 pieces as follows:

#cr(M) = #crVV(M) + #crEE(M) + #crVE(M),

where:

• #crVV(M) is the number of crossings in M with both edges in vertex gadgets,

• #crEE(M) is the number of crossings in M with both edges in edge gadgets,

• #crVE(M) is the number of crossings in M with one edge in a vertex gadget and
the other one in an edge gadget.

We begin by calculating #crVV(M). Observe that there are no crossings in M be-
tween edges of different vertex gadgets, as these gadgets do not overlap. Observe also
that in the vertex gadget for v, there are 1 + 4 · deg(v) crossings in M if v ∈ S(M), and
only 4 · deg(v) otherwise. Thus, we have

#crVV(M) = |S(M)|+
∑

v∈V (H)

4 · deg(v) = |S(M)|+ 2|E(H)|.

Now, we aim to show that #crEE(M) may depend on the way the vertices ofH were
ordered and the way the slots were assigned to the edges of H , but it does not depend
on the particular choice of the matching M . Note first that there is exactly one crossing
in each edge gadget (independently of choosing red or green edges to M ), totaling
|E(H)| crossings. Next observe that two different edge gadgets,A = {a, b, c, d, e, f} and
A′ = {a′, b′, c′, d′, e′, f ′} with a <1 a

′, can be ordered in three different ways, as shown
in Figure 3.6. Note that in each of the cases (a), (b) and (c) the number of crossings does
not depend on M . It follows from the analysis in Figure 3.6 that

#crEE(M) = |E(H)|+ 0Ca + 3Cb + 2Cc,

where Ca, Cb, Cc are the number of pairs of edges that are ordered as in case (a), (b) or
(c), respectively.

Finally we are left with #crVE(M), so that we need to count crossings between the
edges of the vertex gadget of vq ∈ V (H) and the edges in the edge gadget of e =
{vi, vj} ∈ E(H) with i < j. There are 10 ways these two gadgets may interfere:

(1) vq /∈ {vi, vj} and either q < i < j or i < j < q, i.e. the gadgets do not overlap.

This case does not contribute to #crVE(M).

(2) vq /∈ {vi, vj} and i < q < j.

In this case, exactly one edge ofM in the edge gadget for vivj , a green one or a red
one, crosses all 1 + 8 · deg(vq) edges of M in the vertex gadget for vq, and there
are no other crossings. The total number C♦ of crossings coming from all such
overlaps is obviously independent of the matching M .
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(a)

(b)

(c)

0 crossings

3 crossings

2 crossings

b

a

c

d e

f b′

a′

c′

d′ e′

f ′

b

a

c

d e

fb′

a′

c′

d′ e′

f ′

b

a

c

d e

fb′

a′

c′

d′ e′

f ′

Figure 3.6: The 3 possibilities of how the vertices of two different edge gadgets are ordered. In case (a),
there are 0 crossings. In case (b), either the edge {b, d} or the edge {c, e} crosses all 3 matching edges in
the other gadget and there are no other crossings, which gives 3 crossings. In case (c), exactly one of the
edges {b, d} and {c, e} crosses the matching edge of a′ and exactly one of the edges {b′, d′} and {c′, e′}
crosses the matching edge of f , and there are no other crossings, which gives 2 crossings.

Recall that we refer to vq ∈ S(M) as vq being selected. Whenever e is oriented
towards vq, we say that vq is the head of the oriented edge, otherwise we say that vq is
its tail. The remaining 8 cases distinguish whether vq overlaps with the left or the right
part of the gadget of e, whether it is selected or not, and whether it is the head or the
tail of e.

(3) [left, selected, head] q = i, vq ∈ S(M), and vq is the head of e in ~H(M).

(4) [left, selected, tail] q = i, vq ∈ S(M), and vq is the tail of e in ~H(M).

(5) [left, not selected, head] q = i, vq /∈ S(M), and vq is the head of e in ~H(M).

(6) [left, not selected, tail] q = i, vq /∈ S(M), and vq is the tail of e in ~H(M).

(7) [right, selected, head] q = j, vq ∈ S(M), and vq is the head of e in ~H(M).

(8) [right, selected, tail] q = j, vq ∈ S(M), and vq is the tail of e in ~H(M).

(9) [right, not selected, head] q = j, vq /∈ S(M), and vq is the head of e in ~H(M).

(10) [right, not selected, tail] q = j, vq /∈ S(M), and vq is the tail of e in ~H(M).

Let the values #lsh(M), #lst(M), #lnsh(M), #lnst(M), #rsh(M), #rst(M), #rnsh(M),
and #rnst(M) be the number of occurrences of each of the cases (3) – (10), respectively.

First, we analyze the number of crossings from the cases (3) – (6). Let sq,j be the
number of slots in the vertex gadget of vq that are to the right of the slot ORe

vq . Obvi-
ously, the value sq,j does not depend onM . The number of crossings between the edges
of the gadget for vq and the edges of the gadget for e in these 4 cases is calculated in
Figure 3.7.
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(3)

left, selected, head;
2sq,j + 1 crossings;
#lsh(M) such situations

(4)

left, selected, tail;
2sq,j + 5 crossings;
#lst(M) such situations

(5)

left, not selected, head;
2sq,j + 3 crossings;
#lnsh(M) such situations

(6)

left, not selected, tail;
2sq,j + 5 crossings;
#lnst(M) such situations

IRe
vq ORe

vq

Figure 3.7: The 4 possible configurations of crossings between the right part of the vertex gadget for vq
and the left part of the edge gadget for e, here sq,j = 2.

Let Cl be the sum of the values 2sq,j + 1, where q < j range over all edges {vq, vj} ∈
E(H). The total number of crossings in the cases (3) – (6) is equal to:

#cr3−6VE (M) = Cl + 2 ·#lnsh(M) + 4 ·#lst(M) + 4 ·#lnst(M).

Now we analyze the total number of crossings in the cases (7) – (10). By symmetry,
this number amounts to:

#cr7−10VE (M) = Cr + 2 ·#rnsh(M) + 4 ·#rst(M) + 4 ·#rnst(M).

Summing up all 10 cases, we obtain:

#crVE(M) = C♦ + #cr3−6VE (M) + #cr7−10VE (M)

= C♦ + Cl + Cr + 2(#lnsh(M) + #rnsh(M))

+ 4(#lst(M) + #lnst(M) + #rst(M) + #rnst(M)).

(?)

Let #nsh(M) = #lnsh(M)+#rnsh(M). Now, observe that the sum #lst(M)+#lnst(M)+
#rst(M) + #rnst(M) is simply |E(H)|, and (?) simplifies to:

#crVE(M) = C♦ + Cl + Cr + 2 ·#nsh(M) + 4|E(H)|.

We are now ready to conclude our analysis with

#cr(M) = #crVV(M) + #crEE(M) + #crVE(M)

= |S(M)|+ 3Cb + 2Cc + C♦ + Cl + Cr + 2 ·#nsh(M) + 7|E(H)|
= |S(M)|+ 2 ·#nsh(M) + C,

where C = 3Cb + 2Cc + C♦ + Cl + Cr + 7|E(H)| is a constant completely independent
of the matching M .
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To complete the description of our reduction from VERTEX COVER to CROSSING-
-MINIMIZING MATCHING, we set k = l + C. It is straightforward to implement the
reduction algorithm in logarithmic space. It remains to prove that G admits a perfect
matching with at most k crossings if and only if H admits a vertex cover of size l.

First suppose that H admits a vertex cover S of size at most l and ~H is a covering
orientation for S. Let M be the perfect matching in G with S(M) = S and ~H(M) = ~H .
We have #nsh(M) = 0 because ~H is covering for S, and the number of crossings in M
is equal to |S(M)|+ C 6 l + C = k.

For the other direction, assume that G admits a perfect matching with at most k
crossings. Let M be any such matching with minimum number of crossings. Observe
that #nsh(M) = 0. Indeed, if there exists an edge (vi, vj) ∈ E( ~H(M)) such that vj /∈
S(M), one can replace the yellow perfect matching in the gadget for vj with the blue
one and obtain a perfect matchingM ′ inG such that vj ∈ S(M ′). As |S(M ′)| = |S(M)|+
1 and #nsh(M ′) = #nsh(M) − 1, we have #cr(M ′) = #cr(M) − 1, which contradicts
the minimality of #cr(M). Now observe that ~H(M) is a covering orientation for S(M)
thanks to #nsh(M) = 0. Finally, as the number of crossings in M is equal to |S(M)|+C
and is no larger than k, the size of the vertex cover S(M) is at most k − C = l.

Observe that in the proof above, the size of the CROSSING-MINIMIZING MATCH-
ING instance is linear in the size of the VERTEX COVER instance. Indeed, for every
vertex v ∈ V (H) we produce 16 · deg(v) + 2 vertices of G, and for every edge of H ,
six vertices are produced. Hence, the number of vertices in the graph G, outputted by
the reduction, is bounded by O(|V (H)|+ |E(H)|). As the vertices in G are of degree
at most 2, we have |E(G)| = O(|V (H)|+ |E(H)|). We note that VERTEX COVER does
not admit an algorithm running in time 2o(|V (H)|+|E(H)|), assuming the Exponential Time
Hypothesis (Theorem 14.6 in [23]). This yields the following:

Theorem 3.2. There is no 2o(|V (G)|+|E(G)|) algorithm for CROSSING-MINIMIZING MATCH-
ING, unless ETH fails.



4
Smaller universal targets for homomorphisms
of edge-colored graphs

Studying universal structures, which reflect and encode all possible structures of a cer-
tain kind, has been an important part of computer science. In this chapter, for each q, d,
and k we construct a finite k-edge-colored graph Hq,d,k that captures the local behav-
ior of all k-edge-colorings of all graphs with acyclic chromatic number at most q and
density at most d. This is a continuation and strengthening of our research published
in [47] and presented in 2015 as a master’s thesis.

4.1 Introduction

A k-edge-colored graph G is a pair (G, c), where G is a graph, called an underlying graph
of G, and c is a mapping from E(G) to [k], called a k-edge-coloring of G. For {u, v} ∈
E(G), instead of c({u, v}) we simply write c(u, v). A k-edge-colored graph over G is
a k-edge-colored graph with the underlying graph G.

Let G1 = (G1, c1) and G2 = (G2, c2) be two k-edge-colored graphs. A mapping
h : V (G1) → V (G2) is a homomorphism of G1 to G2 if, for every two vertices u and v
that are adjacent in G1, h(u) and h(v) are adjacent in G2 and c1(u, v) = c2(h(u), h(v)).
In other words, a homomorphism of G1 to G2 maps every colored edge in G1 into
an edge of the same color in G2.

A k-edge-colored graph H is k-universal1 for a class F of graphs if every k-edge-
colored graph over any graph in F admits a homomorphism to H. We denote by
λF(k) the minimum possible number of vertices in a k-universal graph for F . We set
λF(k) =∞ if such a graph does not exist.

Observe that λF(1) is the maximum chromatic number of all graphs inF . Although
this parameter is of great importance in graph theory, this chapter is focused on the
behavior of λF(k) when k tends to infinity. In particular, the case k = 1 differs signifi-
cantly from the case k > 2. Only the latter one is the subject of this chapter.

The concept of finding a small k-universal graph for a certain class of graphs first
arose in 1998, when Alon and Marshall [3] used it to obtain a result on Coxeter groups.
They showed for the class of planar graphs P that λP(k) is between k3 + 3 and 5k4.
They also generalized their ideas for graphs with bounded acyclic chromatic number.
An acyclic coloring of a graph G is an assignment of colors to the vertices of G such
that adjacent vertices have different colors and every subgraph of G with vertices in

1In literature, universal graphs are also called homomorphism bounds.
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at most 2 colors is acyclic. The acyclic chromatic number of a graph G, denoted χa(G),
is the minimum number of colors in an acyclic coloring of G. For a class F of graphs,
if the acyclic chromatic number of the graphs in F is bounded by a constant, we write
χa(F) = maxG∈F χa(G) (and set χa(F) =∞ otherwise). Alon and Marshall [3] showed
that for every graph class F with χa(F) = r <∞, we have λF(k) 6 rkr−1. Plugging in
the famous result of Borodin [13] that χa(P) 6 5 gives λP(k) 6 5k4.

A concept similar to homomorphisms of edge colorings was considered by Ras-
paud and Sopena [69]. They show that for every oriented planar graph ~G there exists
an oriented graph ~H on at most 80 vertices, such that ~G maps homomorphically to ~H ,
where a homomorphism of an oriented graph ~G to an oriented graph ~H is a mapping
h : V (~G)→ V ( ~H) such that for every directed edge (u, v) ∈ E(~G), there is an edge from
h(u) to h(v) in ~H . This concept is also known under the name oriented coloring. A simple
consequence of this result is that there exists a single graph ~H on at most 80 vertices,
to which every oriented planar graph maps homomorphically. Later, Nešetřil and Ras-
paud [66] proved a theorem about mixed graphs (i.e. graphs with both oriented and un-
oriented colored edges) that implies both the results of Alon and Marshall and those
of Raspaud and Sopena (see also [24]).

Universal graphs were recently analyzed further in our paper with Gutowski [47].
We now shortly summarize these results. First, it is shown that for every k > 2,
a class F of graphs admits a k-universal graph if and only if the acyclic chromatic
number of graphs in F is bounded by a constant. In particular, this means that F ei-
ther admits a k-universal graph for all k > 2 or for no k > 2. Next, an analysis of
the asymptotic behavior of λF(k) is performed. It happens that λF(k) can be much
smaller than O

(
kχa(F)−1

)
and is more closely related to the density of the graphs in F .

For a graph G, the density of G, denoted D(G), is the maximum ratio of the number
of edges to the number of vertices over all subgraphs of G. For a class F of graphs, its
density D(F) is the supremum of the densities of the graphs in F . A simple argument
givesD(F) 6 χa(F)−1 and there are examples of classes of graphs with bounded den-
sity and unbounded acyclic chromatic number. The main result of [47] is the following
theorem:

Theorem 4.1 ([47]). Let F be a class of graphs with χa(F) = r <∞ and dD(F)e = d. Then,
for the constant c = 8dr4

(
8dr4

d

)
, we have

kD(F) 6 λF(k) 6 ckdD(F)e,

for all k > 2.

Since D(F) 6 χa(F) − 1, the above upper bound is asymptotically no worse than
the one by Alon and Marshall (although the latter is usually much better for small k’s).
For any class of graphs with density being an integer, the bounds of Theorem 4.1 are
asymptotically tight. For example, we get that λP(k) = Θ(k3).

In this chapter, we continue the study of the asymptotics of λF(k). The paper [47]
concludes with the question whether λF(k) is always Θ

(
kD(F)). Our next theorem

confirms this hypothesis for D(F) being a rational number and provides evidence that
it should hold in general.
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Theorem 4.2. Let F be a class of graphs with χa(F) = r <∞ and D(F) bounded from above
by a quotient s/t of natural numbers. Then, for the constant c = 2s(8r4s)

t(8r4st
s

)
, we have

kD(F) 6 λF(k) 6 cks/t, (1)

for all k > 2.

The immediate consequences of Theorem 4.2 for a class F with χa(F) <∞ are:

(1) λF(k) = Θ
(
kD(F)), if D(F) is a rational number,

(2) λF(k) = o
(
kD(F)+ε) for every ε > 0.

Our proof of Theorem 4.2 uses the techniques from [47] in a new way. In particu-
lar, the proof requires additional ideas that allow us to work with nonintegral graph
densities. It is known that a graph G admits a dD(G)e-orientation. We employ a more
fine-grained concept of fractional orientations to have a better control over the con-
struction size. This technique seems to be quite interesting on its own and we hope
that it can be used in other problems related to edge densities or other nonintegral
graph parameters.

4.2 Universal graph construction

In this section, we collect several tools from [47] and apply them in a new way to obtain
the main theorem.

The paper [47] makes use of a simple observation, attributed to Hakimi [48], that for
an integer d, a graphG admits a d-orientation if and only ifD(G) 6 d. Not surprisingly,
d may be relaxed to be a rational number s/t. First, we replace the original graph
with a multigraph that contains t copies of each edge. Now, for a vertex v, instead of
orienting at most d edges towards v in G, we orient at most s edges towards v in this
multigraph. We formalize this idea in the following lemma:

Lemma 4.3. For every graph G and a quotient s/t of natural numbers, we have D(G) 6 s/t

if and only if there exist orientations ~G1, ..., ~Gt of G such that for every v ∈ V (G)

t∑
i=1

degin
~Gi

(v) 6 s. (2)

Proof. Assume that the orientations ~G1, ..., ~Gt of G have the property (2). Let H be
a subgraph of G. For every i = 1, ..., t, we have

|E(H)| 6
∑

v∈V (H)

degin
~Gi

(v).

Summing up over the i’s, we get

t · |E(H)| 6
∑

v∈V (H)

t∑
i=1

degin
~Gi

(v) 6 |V (H)| · s.
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Therefore, |E(H)|/|V (H)| 6 s/t.
For the other direction, we assume that D(G) 6 s/t and apply Hall’s Theorem to

a bipartite graphB constructed as follows. The vertex set ofB contains s copies of each
vertex of G and t copies of each edge of G. For each v ∈ V (G) and e ∈ E(G) such that
v is incident with e, we add an edge in B between every copy of v and every copy of e.

We show that B admits a matching of all edge copies by checking the Hall’s condi-
tion for every setX of edge copies. Every suchX induces a subgraph ofGwith at least
|X|/t edges and, according to the density bound, at least |X|/s vertices. As every ver-
tex of G has s copies in B, the set X is incident with at least |X| vertices of B, and by
Hall’s Theorem the required matching indeed exists.

Now, given a matching in B, we construct the orientations ~G1, ..., ~Gt as follows:
in the i-th orientation, every edge e is oriented towards the vertex whose copy is paired
in the matching with the i-th copy of e. The bound on the sum of indegrees of v ∈ V (G)
in all orientations follows from the fact that there are s copies of v.

Apart from the acyclic coloring, we use two other kinds of colorings. The first one,
the star coloring of a graph, is an assignment of colors to the vertices of the graph such
that:

(i) every two adjacent vertices get different colors,

(ii) every subsequent four vertices on any path in the graph get at least 3 different
colors.

In other words, a star coloring is a proper coloring such that, for any two colors, ev-
ery connected component in the graph induced by vertices of these two colors has at
most one vertex of degree higher than one. Observe that any star coloring of G is an
acyclic coloring of G. Conversely, Albertson, Chappell, Kierstead, Kündgen and Ra-
mamurthi [2] showed that any acyclic coloring with r colors can be used to construct a
star coloring with at most 2r2 − r colors.

The other coloring we need is called out-coloring and is a technical tool from [47].
This concept appeared in almost the same form under the name in-coloring in [2], and
earlier without name in Nešetřil and Ossona de Mendez [65]. Let ~G be an orientation
of a graph G. We use the following notions: if (u, v) is an edge of ~G, then u is a parent
of v; if (u, v) and (v, w) are edges of ~G, then u is a grandparent of w. An out-coloring of
an oriented graph is an assignment of colors to the vertices of the graph such that:

(C1) every two adjacent vertices get different colors,

(C2) every two distinct parents of a single vertex get different colors,

(C3) a vertex gets different colors from any of its grandparents.

Out-colorings are closely related to star colorings (and acyclic colorings, in conse-
quence). Indeed, every out-coloring of ~G is a star coloring ofG. Moreover, [47] contains
an easy construction of an out-coloring of ~G from a star coloring of G.

For the upper bound for λF(k) given in [47], an explicit construction of a k-universal
graph has been provided, and the heart of this construction is contained in the follow-
ing lemma:
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Lemma 4.4 ([47], Lemma 11). LetF be a class of graphs for which there are absolute constants
q and d such that every graph inF admits a d-orientation that has an out-coloring with q colors.
For any k > 2, the following holds:

λF(k) 6 q

(
q

d

)
kd.

In the current setting, we need the following slightly stronger restatement of Lem-
ma 4.4, in which the universal graph is carefully stratified.

Lemma 4.5. For integers k > 2, d and q there exist a k-edge-colored graph H and sets V0 ⊆
... ⊆ Vd = V (H) such that:

(P1) for every k-edge-colored graph G = (G, cG) and for every d-orientation ~G of G that
admits an out-coloring with q colors there exists a homomorphism h of G to H such that
for every vertex v ∈ V (G) with indegree i in ~G we have h(v) ∈ Vi,

(P2) the size of each set Vi satisfies |Vi| 6 q
(
q
i

)
ki.

Proof. Our construction of H = (H, cH) is modeled after the one used in [47] to prove
Lemma 4.4.

The vertex set of H is the set of all (q + 1)-tuples of the form

(α, x1, x2, ..., xq),

where α ∈ [q], xj ∈ [k], and where among x1, x2, ..., xq there are at most d values differ-
ent from k. We make H to be a complete graph. The edges of H are colored by

cH((α, x1, x2, ..., xq), (β, y1, y2, ..., yq)) = min(yα, xβ).

Now, the vertices (α, x1, ..., xq) of H are stratified into the sets Vi according to how
many xj’s differ from k, i.e. we put

Vi = {(α, x1, ..., xq) ∈ V (H) | #{j | xj 6= k} 6 i} .

Obviously, |Vi| 6 q
(
q
i

)
ki, as required in (P2).

Let G = (G, cG) be a k-edge-colored graph such thatG admits a d-orientation ~G that
has an out-coloring f with q colors. Note that ~G being a d-orientation of G restricts
the number of parents of any vertex of G to at most d. Moreover, condition (C2) for
out-colorings gives that for each color j ∈ [q] used by f , a vertex u of G has at most
one parent p of color j. This allows us to correctly define a mapping h : V (G)→ V (H)
by putting

h(u) = (f(u), x1, x2, ..., xq),

where

xj =

{
cG(u, p), if u has a parent p in ~G with f(p) = j,
k, otherwise.

Directly from this definition, it should be obvious that h(u) ∈ Vi whenever u has at most
i parents.
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Finally, to see that h is a homomorphism, start with an edge {u, v} ∈ E(G), and
suppose (without loss of generality) that v is a parent of u in ~G. Representing h(u) and
h(v) by

h(u) = (f(u), x1, x2, ..., xr),

h(v) = (f(v), y1, y2, ..., yr),

we note that (C1) yields f(u) 6= f(v) and consequently h(u) 6= h(v).
It remains to argue that cH(h(u), h(v)) = cG(u, v). However, in the view of

cH(h(u), h(v)) = min(xf(v), yf(u)) and xf(v) = cG(u, v), it suffices to show that yf(u) = k.
Suppose otherwise, so that v has a parent p in ~G that is colored by f(u). But then, p is
a grandparent of u and f(p) = f(u), which contradicts condition (C3).

After these preparations, we are ready to construct a k-universal graph on O
(
ks/t
)

vertices.

Lemma 4.6. Let F be a class of graphs with density bounded from above by a quotient s/t
of natural numbers and let q be an integer such that every s-orientation of every graph in F
admits an out-coloring with q colors. For any k > 2, the following holds:

λF(k) 6 2sqt
(
qt

s

)
ks/t.

Proof. Let k0 =
⌈
k1/t
⌉

and let g be a one-to-one mapping from [k] to [k0]
t. After putting

k = k0 and d = s, Lemma 4.5 supplies us with a k0-edge-colored graph H0 = (H0, cH0)
and a sequence V0 ⊆ ... ⊆ Vs of subsets of V (H0) with properties (P1) and (P2). We con-
struct a k-universal graph H = (H, cH) for F as follows. The vertex set ofH is given by:

V (H) =
⋃

i1,...,it∈{0,...,s}
i1+...+it=s

Vi1 × ...× Vit .

We note that V (H) is a subset of V (H0)
t and the size of V (H) is bounded by:

∑
i1,...,it∈{0,...,s}
i1+...+it=s

t∏
j=1

q

(
q

ij

)⌈
k1/t
⌉ij 6 qt

(
qt

s

)(
k1/t + 1

)s
6 qt

(
qt

s

)
2sks/t.

An edge between (u1, ..., ut), (v1, ..., vt) ∈ V (H) exists if and only if {ui, vi} is an edge
in H0 for every i ∈ [t] and (cH0(u1, v1), ..., cH0(ut, vt)) is contained in the range of g.
In such a case we put:

cH((u1, ..., ut), (v1, ..., vt)) = g−1((cH0(u1, v1), ..., cH0(ut, vt))).

Now, let G = (G, cG) be a k-edge-colored graph with G ∈ F . To construct a homomor-
phism of G to H, we start with defining c1, ..., ct to be k0-edge-colorings of G such that
for every {u, v} ∈ E(G)

g(cG(u, v)) = (c1(u, v), ..., ct(u, v)).
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Next, let ~G1, ..., ~Gt be the s-orientations of G provided by Lemma 4.3. Applying Lem-
ma 4.5 to the k0-edge-colored graph (G, cj) and the s-orientation ~Gj , we get a homo-
morphism hj : (G, cj)→ H0. We want the mapping defined by

h(v) = (h1(v), ..., ht(v))

to be a homomorphism of G to H.
To see that h(v) ∈ V (H), note that the bound (2) of Lemma 4.3 together with prop-

erty (P1) yields h(v) ∈ Vi1 × ... × Vit for some i1, ..., it with i1 + ... + it = s. To see
that h preserves an edge {u, v} ∈ E(G), first note that each hi preserves it, so that
{hi(u), hi(v)} ∈ E(H0) and ci(u, v) = cH0(hi(u), hi(v)). The tuple

(cH0(h1(u), h1(v)), ..., cH0(ht(u), ht(v))) = (c1(u, v), ..., ct(u, v)) = g(cG(u, v))

is contained in the range of g, therefore the vertices

h(u) = (h1(u), ..., ht(u)), h(v) = (h1(v), ..., ht(v))

are connected by an edge in H. Its color is given by

cH((h1(u), ..., ht(u)), (h1(v), ..., ht(v))) = g−1((cH0(h1(u), h1(v)), ..., cH0(ht(u), ht(v))))

= g−1((c1(u, v), ..., ct(u, v)))

= cG(u, v),

which concludes the proof.

Now we are ready to prove our main theorem.

Proof of Theorem 4.2. Note that the lower bound in (1) appears already in Theorem 4.1.
For the upper bound, first recall that one of the results in [2] says that every graph in F
admits a star coloring with at most 2r2−r colors. By applying Lemma 10 from [47], we
get that every s-orientation of every graph from F admits an out-coloring with at most
8r4s colors. We apply Lemma 4.6 with q = 8r4s and obtain a k-universal graph for F
of the desired size.
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[46] Grzegorz Guśpiel. An in-place, subquadratic algorithm for permutation inver-
sion. 2019. arXiv:1901.01926.
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[66] Jaroslav Nešetřil and André Raspaud. Colored homomorphisms of colored mixed
graphs. Journal of Combinatorial Theory, Series B, 80(1):147–155, 2000.

[67] Ralph H. J. M. Otten and J. G. van Wijk. Graph representations in interactive
layout design. In IEEE International Symposium on Circuits and Systems, New York,
NY, USA, May 1978. Proceedings, pages 914–918, 1978.

http://orderandgeometry2016.tcs.uj.edu.pl/docs/OG2016-Problem-Booklet.pdf
http://orderandgeometry2016.tcs.uj.edu.pl/docs/OG2016-Problem-Booklet.pdf


76 Bibliography

[68] Maurizio Patrignani. On extending a partial straight-line drawing. International
Journal of Foundations of Computer Science, 17(5):1061–1070, 2006.

[69] André Raspaud and Eric Sopena. Good and semi-strong colorings of oriented
planar graphs. Inf. Process. Lett., 51(4):171–174, August 1994.

[70] Matthew Robertson. Inverting permutations in place. PhD thesis, University of
Waterloo, Waterloo, Ontario, Canada, 2015.

[71] Martine Schlag, Fabrizio Luccio, Piero Maestrini, Der-Tsai Lee, and Chak-Kuen
Wong. A visibility problem in VLSI layout compaction. Advances in Computing
Research, 2:259–282, 1985.

[72] James A. Storer. On minimal-node-cost planar embeddings. Networks, 14(2):181–
212, 1984.

[73] Roberto Tamassia and Ioannis G. Tollis. A unified approach to visibility represen-
tations of planar graphs. Discrete & Computational Geometry, 1(4):321–341, 1986.

[74] Jiun-Jie Wang and Xin He. Visibility representation of plane graphs with simulta-
neous bound for both width and height. Journal of Graph Algorithms and Applica-
tions, 16(2):317–334, 2012.

[75] Stephen K. Wismath. Characterizing bar line-of-sight graphs. In SCG 1985: 1st
Annual Symposium on Computational Geometry, Baltimore, MD, USA, June 1985. Pro-
ceedings, pages 147–152, 1985.

[76] Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiy-
omi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki
Uno. Swapping labeled tokens on graphs. Theoretical Computer Science, 586:81 –
94, 2015. Fun with Algorithms.

[77] Blog discussion. https://codeforces.com/blog/entry/50500. Online;
accessed May 1, 2019.

https://codeforces.com/blog/entry/50500

	Introduction
	Preliminaries
	An in-place, subquadratic algorithm for permutation inversion
	Previous work
	A summary of the O(n3/2) algorithm
	Segments and cycle detection
	The alternative representation of long cycles
	The O(n3/2) algorithm
	Storing the value S
	Suggestions for further research

	The Partial Visibility Representation Extension Problem
	Introduction
	Preliminaries
	Notation
	Planar st-graphs and their properties
	SPQR-trees for planar st-graphs
	NP-complete problems

	Bar visibility and rectangular bar visibility representations for planar digraphs
	Rectangular bar visibility representations of planar st-graphs
	Structural properties
	Algorithm for rectangular bar visibility extension of planar  st-graphs
	Faster algorithm

	Hardness results
	Representations of undirected graphs
	Grid representations

	Open problems
	Weak visibility
	Strong visibility


	Complexity of minimizing the number of intersecting edges in perfect bipartite matchings
	Smaller universal targets for homomorphisms of edge-colored graphs
	Introduction
	Universal graph construction

	Bibliography

