Colorful homomorphisms

Grzegorz Guśpiel

supervisor: Dr Tomasz Krawczyk

Theoretical Computer Science Jagiellonian University

17 lipca 2015

< □ > < □ > < □ > < □ > < □ > < □ > = □

This thesis is based on joint work with Grzegorz Gutowski.

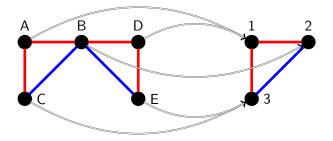
A *k*-edge-colored graph \mathbb{G} is a pair (G, c), where:

- G is a graph,
- c is a mapping from E(G) to $\{1, 2, \ldots, k\}$.

Homomorphism

 \mathbb{G}, \mathbb{H} - two *k*-edge-colored graphs.

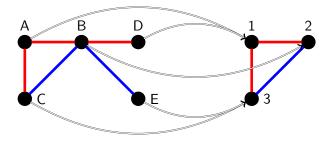
A mapping $h: V(\mathbb{G}) \to V(\mathbb{H})$ is a homomorphism if every colored edge $\{u, v\}$ maps to an edge $\{h(u), h(v)\}$ of the same color.

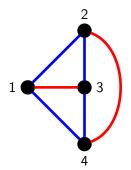


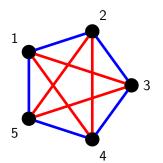
Homomorphism

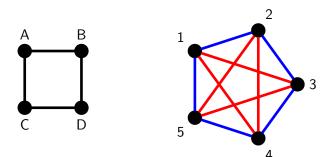
 \mathbb{G}, \mathbb{H} - two *k*-edge-colored graphs.

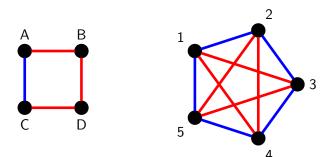
A mapping $h: V(\mathbb{G}) \to V(\mathbb{H})$ is a homomorphism if every colored edge $\{u, v\}$ maps to an edge $\{h(u), h(v)\}$ of the same color.

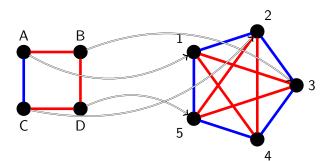




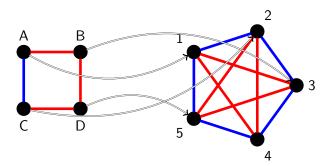








A *k*-edge-colored graph \mathbb{H} is *k*-universal for a graph class \mathcal{F} if every *k*-edge-colored graph with the underlying graph in \mathcal{F} maps homomorphically to \mathbb{H} .



Theorem (Alon, Marshall '98)

Planar graphs admit a k-universal graph of size between $k^3 + 3$ and $5k^4$.

4/1

Theorem \mathcal{F} admits k-universal graphs $\widehat{\downarrow}$ the acyclic chromatic number of graphs in \mathcal{F} is bounded by
a constant

Theorem \mathcal{F} admits k-universal graphs \uparrow \uparrow the acyclic chromatic number of graphs in \mathcal{F} is bounded by
a constant

イロト 不得 トイヨト イヨト 二日

5/1

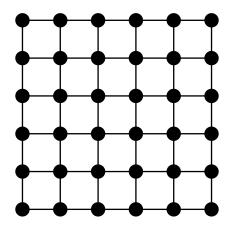
Remarks:

• " \Uparrow " proven by Alon and Marshall.

Acyclic chromatic number

A vertex coloring is acyclic if:

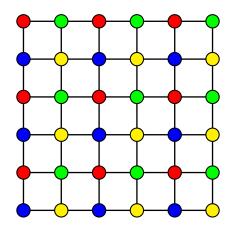
- it is a proper coloring,
- edges between every two colors form a forest.



Acyclic chromatic number

A vertex coloring is acyclic if:

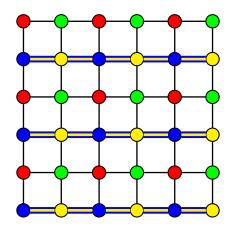
- it is a proper coloring,
- edges between every two colors form a forest.



Acyclic chromatic number

A vertex coloring is acyclic if:

- it is a proper coloring,
- edges between every two colors form a forest.



 $\lambda_{\mathcal{F}}(k) :=$ size of the smallest k-universal graph for \mathcal{F} (or ∞)

 $\lambda_{\mathcal{F}}(k):=$ size of the smallest k-universal graph for \mathcal{F} (or $\infty)$

Theorem

 ${\mathcal F}$ - a class of graphs with acyclic chromatic number bounded by a constant.

The function $\lambda_{\mathcal{F}}(k)$ satisfies:

•
$$\lambda_{\mathcal{F}}(k) = O(k^{\lceil D(\mathcal{F}) \rceil}),$$

•
$$\lambda_{\mathcal{F}}(k) = \Omega(k^{D(\mathcal{F})}),$$

where $D(\mathcal{F})$ is the density of \mathcal{F} .

 $\lambda_{\mathcal{F}}(k):=$ size of the smallest k-universal graph for \mathcal{F} (or $\infty)$

Theorem

 ${\mathcal F}$ - a class of graphs with acyclic chromatic number bounded by a constant.

The function $\lambda_{\mathcal{F}}(k)$ satisfies:

•
$$\lambda_{\mathcal{F}}(k) = O(k^{\lceil D(\mathcal{F}) \rceil}),$$

•
$$\lambda_{\mathcal{F}}(k) = \Omega(k^{D(\mathcal{F})}),$$

where $D(\mathcal{F})$ is the density of \mathcal{F} .

Density of a graph G:

$$D(G) = \max\left\{\frac{|E(G')|}{|V(G')|} : G' \text{ is a nonempty subgraph of } G\right\}$$

 $\lambda_{\mathcal{F}}(k):=$ size of the smallest k-universal graph for \mathcal{F} (or $\infty)$

Theorem

 ${\mathcal F}$ - a class of graphs with acyclic chromatic number bounded by a constant.

The function $\lambda_{\mathcal{F}}(k)$ satisfies:

•
$$\lambda_{\mathcal{F}}(k) = O(k^{\lceil D(\mathcal{F}) \rceil}),$$

•
$$\lambda_{\mathcal{F}}(k) = \Omega(k^{D(\mathcal{F})}),$$

where $D(\mathcal{F})$ is the density of \mathcal{F} .

Density of a graph G:

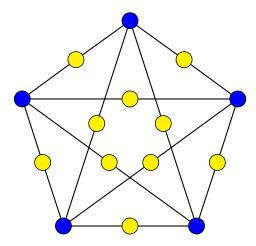
$$D(G) = \max\left\{\frac{|E(G')|}{|V(G')|} : G' \text{ is a nonempty subgraph of } G\right\}$$

Density of a graph class \mathcal{F} :

$$D(\mathcal{F}) := \sup \left\{ D(G) : G \in \mathcal{F} \right\}.$$

Example: clique subdivisions

 $SK_n := 1$ -subdivision of K_n



Theorem (Alon, Marshall '98)

 \mathcal{F} - a class of graphs with acyclic chromatic number bounded by r. The function $\lambda_{\mathcal{F}}(k)$ satisfies the bound:

$$\lambda_{\mathcal{F}}(k) \leqslant rk^{r-1}.$$

Theorem (Alon, Marshall '98)

 \mathcal{F} - a class of graphs with acyclic chromatic number bounded by r. The function $\lambda_{\mathcal{F}}(k)$ satisfies the bound:

$$\lambda_{\mathcal{F}}(k) \leqslant rk^{r-1}.$$

Remarks:

•
$$D(G) \leq r - 1$$
,

Theorem (Alon, Marshall '98)

 \mathcal{F} - a class of graphs with acyclic chromatic number bounded by r. The function $\lambda_{\mathcal{F}}(k)$ satisfies the bound:

$$\lambda_{\mathcal{F}}(k) \leqslant rk^{r-1}.$$

Remarks:

•
$$D(G) \leq r-1$$

• $\lambda_{\mathcal{F}}(k) = O(k^{\lceil D(\mathcal{F}) \rceil})$ never worse than $\lambda_{\mathcal{F}}(k) = O(k^{r-1})$.

Planar graphs \mathcal{P} :

- $\lambda_{\mathcal{P}}(k) = \Theta(k^3)$ as $D(\mathcal{P}) = 3$,
- λ_P(k) = O(k⁴) as the acyclic chromatic number of any planar graph is at most 5 (Borodin '79).

Planar graphs \mathcal{P} :

- $\lambda_{\mathcal{P}}(k) = \Theta(k^3)$ as $D(\mathcal{P}) = 3$,
- λ_P(k) = O(k⁴) as the acyclic chromatic number of any planar graph is at most 5 (Borodin '79).

Graphs $\mathcal{G}(g)$ with genus bounded by g:

An orientation \vec{G} of graph G is a *d*-orientation if the in-degree of every vertex is bounded by *d*.

An orientation \vec{G} of graph G is a *d*-orientation if the in-degree of every vertex is bounded by *d*.

Main tools:

- Hakimi's lemma (D(G) = d gives a $\lceil d \rceil$ -orientation \vec{G}),
- an auxiliary coloring of \vec{G} (from acyclic coloring).

Acknowledgements

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで 12/1