Connecting the Dots (with Minimum Crossings)

Akanksha Agrawal, Grzegorz Guśpiel, Jayakrishnan Madathil, Saket Saurabh, Meirav Zehavi

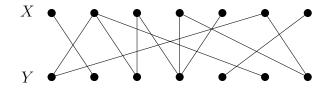
21 June 2019

《曰》 《聞》 《臣》 《臣》 三臣 …

Input: • a bipartite graph G = (V, E) with bipartition $V = X \cup Y$,

- linear orders $<_X$ of X and $<_Y$ of Y,
- a nonnegative integer k.

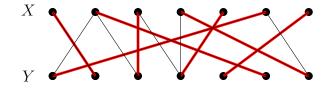
Question: Does G admit a perfect matching $M \subseteq E$ with at most k crossings?



Input: • a bipartite graph G = (V, E) with bipartition $V = X \cup Y$,

- linear orders $<_X$ of X and $<_Y$ of Y,
- a nonnegative integer k.

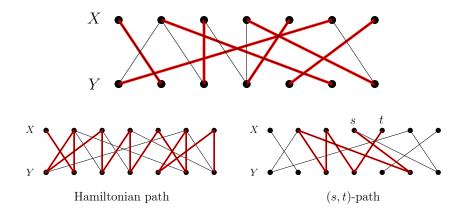
Question: Does G admit a perfect matching $M \subseteq E$ with at most k crossings?



Input: • a bipartite graph G = (V, E) with bipartition $V = X \cup Y$,

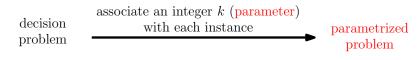
- linear orders $<_X$ of X and $<_Y$ of Y,
- a nonnegative integer k.

Question: Does G admit a perfect matching $M \subseteq E$ with at most k crossings?



Parametrized complexity

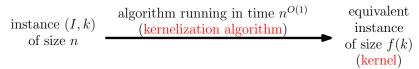
Parametrized problems



FPT algorithms

```
f(k)n^{\mathcal{O}(1)} – fixed parameter tractable (FPT)
```

Kernelization



Hardness in parametrized complexity

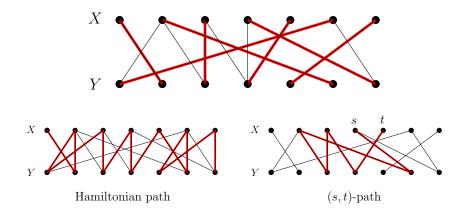
W-hardness

NP-complete?	yes , even on gra- phs of maximum degree 2	yes , even on gra- phs that admit a Hamiltonian path	yes
lower bounds	× $2^{o(n+m)}$ × $2^{o(\sqrt{k})}n^{\mathcal{O}(1)}$ (under ETH)	$ \begin{array}{c} \times 2^{o(n+m)} \\ \times 2^{o(\sqrt{k})} n^{\mathcal{O}(1)} \\ \text{(under ETH)} \end{array} $	W[1]-hard
parametrized algorithm	$2^{\mathcal{O}(\sqrt{k})} n^{\mathcal{O}(1)}$	$2^{\mathcal{O}(\sqrt{k}\log k)}n^{\mathcal{O}(1)}$	$n^{\mathcal{O}(k)}$ (XP)
kernel	$\mathcal{O}(k^2)$ vertices	$\mathcal{O}(k^2)$ vertices	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Input: • a bipartite graph G = (V, E) with bipartition $V = X \cup Y$,

- linear orders $<_X$ of X and $<_Y$ of Y,
- a nonnegative integer k.

Question: Does G admit a perfect matching $M \subseteq E$ with at most k crossings?

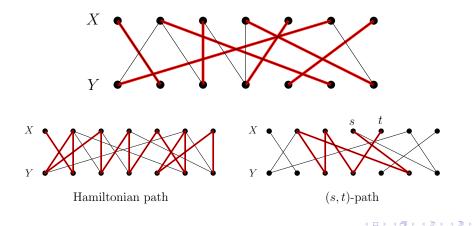


イロト 不得 トイヨト イヨト

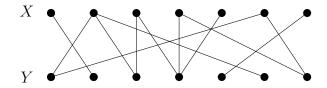
Input: • a bipartite graph G = (V, E) with bipartition $V = X \cup Y$,

- linear orders $<_X$ of X and $<_Y$ of Y,
- a nonnegative integer k.

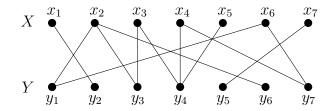
Question: Does G admit a perfect matching $M \subseteq E$ with at most k crossings? **Parameter:** k.



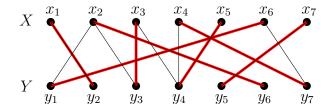
NP-complete?	yes , even on gra- phs of maximum degree 2	yes , even on gra- phs that admit a Hamiltonian path	yes
lower bounds	$ \begin{array}{c} \times \ 2^{o(n+m)} \\ \times \ 2^{o(\sqrt{k})} n^{\mathcal{O}(1)} \\ (\text{under ETH}) \end{array} \end{array} $	$ \begin{array}{c} X \ 2^{o(n+m)} \\ X \ 2^{o(\sqrt{k})} n^{\mathcal{O}(1)} \\ (\text{under ETH}) \end{array} \end{array} $	W[1]-hard
parametrized algorithm	$2^{\mathcal{O}(\sqrt{k})}n^{\mathcal{O}(1)}$	$2^{\mathcal{O}(\sqrt{k}\log k)} n^{\mathcal{O}(1)}$	$n^{\mathcal{O}(k)}$
kernel	$\mathcal{O}(k^2)$ vertices	$\mathcal{O}(k^2)$ vertices	< <u></u>



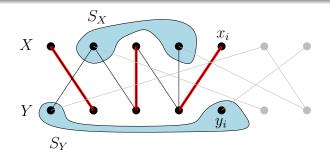
◆□ → ◆□ → ◆ ■ → ◆ ■ → ● ■ の Q で
7/12



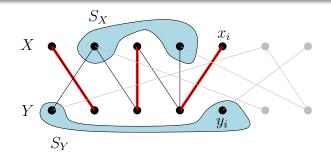
<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < つ < で 7/12



< □ > < ⑦ > < 言 > < 言 > 言 の Q () 7/12



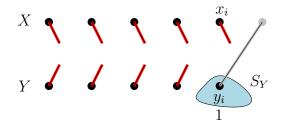
for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.



(日) (四) (注) (注) (正)

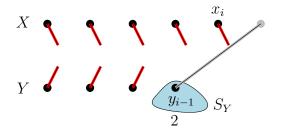
7/12

for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

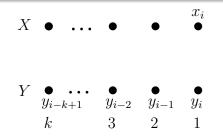
for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

7/12

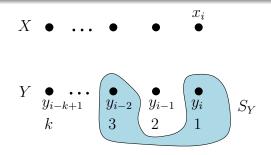
for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.



イロン イロン イヨン イヨン ヨー

7/12

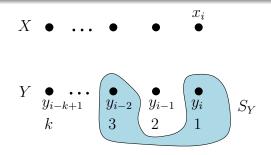
for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.



イロン イヨン イヨン イヨン 三日

for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.

4ⁱ subproblems for each i – too many.



for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.

- 4ⁱ subproblems for each i too many.
- ► For every *i*, consider only S_Y of the form $\{y_{i+1-j_1}, ..., y_{i+1-j_l}\}$, where $j_1 + ... + j_l \leq k$. Analogously for S_X .

$$k = 9$$

$$Y \bullet \phi_{i-8} \bullet g_{i-7} \bullet g_{i-6} \bullet g_{i-5} \bullet g_{i-4} \bullet g_{i-3} \bullet g_{i-2} \bullet g_{i-1} \bullet g_{i} \bullet g_{i-1} \bullet g_{i-1}$$

for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.

• 4^i subproblems for each i – too many.

X

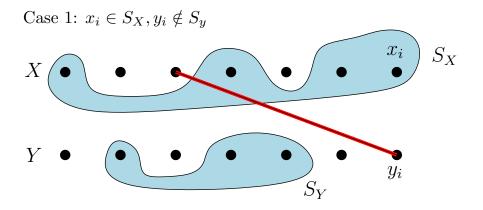
► For every *i*, consider only S_Y of the form $\{y_{i+1-j_1}, ..., y_{i+1-j_l}\}$, where $j_1 + ... + j_l \leq k$. Analogously for S_X .

for every i = 1, ..., n, $S_X \subseteq \{x_1, ..., x_i\}$, and $S_Y \subseteq \{y_1, ..., y_i\}$.

• 4^i subproblems for each i – too many.

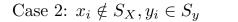
X

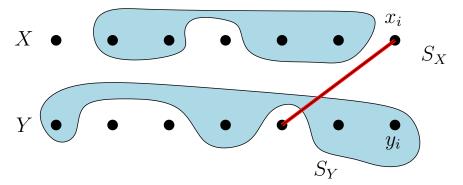
- ► For every *i*, consider only S_Y of the form $\{y_{i+1-j_1}, ..., y_{i+1-j_l}\}$, where $j_1 + ... + j_l \leq k$. Analogously for S_X .
- At most $2^{\mathcal{O}(\sqrt{k})}$ subproblems for a given *i*, and $n2^{\mathcal{O}(\sqrt{k})}$ in total.



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 二臣 - のへで

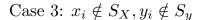
8 / 12

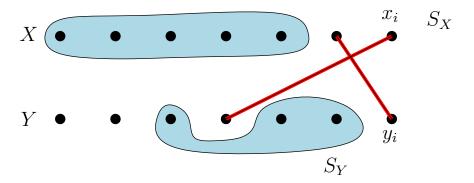




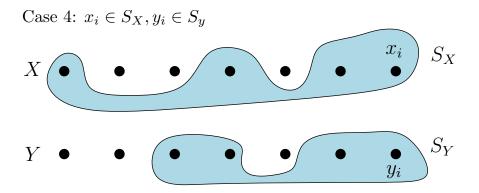
・ロト・西ト・ヨト・ヨー りゃぐ

9/12





<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Thank you!

<ロト</th>
・< 国ト< 国ト< 国ト</th>
シのの

12/12