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Crossing-Minimizing Perfect Matching:
Input: a bipartite graph G = (V ,E ) with bipartition V = X ∪ Y ,

linear orders <X of X and <Y of Y ,
a nonnegative integer k .

Question: Does G admit a perfect matching M ⊆ E with at most k crossings?
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Parametrized complexity
Parametrized problems

parametrized
problem

associate an integer k (parameter)
with each instancedecision

problem

FPT algorithms

f (k)nO(1) – fixed parameter tractable (FPT)

Kernelization

equivalent
instance

of size f(k)
(kernel)

algorithm running in time nO(1)

(kernelization algorithm)instance (I, k)
of size n

Hardness in parametrized complexity

W-hardness
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Our results

perfect matching Hamiltonian path (s, t)-path

NP-complete? yes, even on gra-
phs of maximum
degree 2

yes, even on gra-
phs that admit a
Hamiltonian path

yes

lower bounds 7 2o(n+m)

7 2o(
√
k)nO(1)

(under ETH)

7 2o(n+m)

7 2o(
√
k)nO(1)

(under ETH)

W[1]-hard

parametrized
algorithm

2O(
√
k)nO(1) 2O(

√
k log k)nO(1) nO(k) (XP)

kernel O(k2) vertices O(k2) vertices
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linear orders <X of X and <Y of Y ,
a nonnegative integer k .
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I t[i ][SX ][SY ] – minimum number of crossings in a matching in G
that matches the vertices {x1, ..., xi} \ SX with the vertices {y1, ..., yi} \ SY

(∞ if no such matching),

for every i = 1, ..., n, SX ⊆ {x1, ..., xi}, and SY ⊆ {y1, ..., yi}.
I 4i subproblems for each i – too many.
I For every i , consider only SY of the form {yi+1−j1 , ..., yi+1−jl}, where

j1 + ...+ jl ¬ k . Analogously for SX .
I At most 2O(

√
k) subproblems for a given i , and n2O(

√
k) in total.
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Thank you!
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