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A k-edge-colored graph G is a pair (G, ¢), where:
e G is a graph,
@ c is a mapping from E(G) to {1,..., k}.
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Homomorphism
h: V(G) — V(H) is a homomorphism if for every edge uv € E(G):
o h(u)h(v) € E(H),
o cg(h(u)h(v)) = cg(uv).
€]
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Theorem (Alon, Marshall '98)
k3 +3< )\PLANAR(k) < 5k%.

Theorem (Guspiel, Gutowski '15)
ApLaNAR (k) < 8435812575000000 - k3.




Acyclic coloring

@ Every two adjacent vertices get different colors.

@ Vertices of any cycle in the graph get at least 3 different colors.
Xa(G), xa(F).

Theorem (Guspiel, Gutowski '15)
Ar(k) < 00 <= xa(F) < 0.

(* <= by Alon, Marshall '98)
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Density

D(G) = max{||5((gl,))|| : G’ is a nonempty subgraph of G}.

D(F)=sup{D(G) : G € F}.
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Density

D(G) = max{||5((g/,))|| : G’ is a nonempty subgraph of G}.

D(F)=sup{D(G) : G € F}.

Theorem (Guspiel, Gutowski '15)
If xa(F) < oo, then

kPF) < Ap(k) < CkIPON,

Ar(k) is Q(kPO)) and O(KPET) Is Ax (k) = ©(KPH))?

If xa(F) < 0o and D(F) is a rational number, then

kKPF) < Ap(k) < C'KPO),
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How to get O( D(fw)
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Thank you!
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