# Smaller Universal Targets for Homomorphisms of Edge-colored Graphs

Grzegorz Guśpiel

Jagiellonian University

西安, 30 July 2019



#### A k-edge-colored graph $\mathbb{G}$ is a pair (G, c), where:

- G is a graph,
- c is a mapping from E(G) to  $\{1,...,k\}$ .



 $h:V(\mathbb{G})\to V(\mathbb{H})$  is a homomorphism if for every edge  $uv\in E(\mathbb{G})$ :

- $h(u)h(v) \in E(\mathbb{H})$ ,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$ .



 $h: V(\mathbb{G}) \to V(\mathbb{H})$  is a homomorphism if for every edge  $uv \in E(\mathbb{G})$ :

- $h(u)h(v) \in E(\mathbb{H})$ ,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$ .



#### Universal graph

 $\mathbb{H}$  is k-universal for a class  $\mathcal{F}$  of graphs if every k-edge-coloring of every graph in  $\mathcal{F}$  maps homomorphically to  $\mathbb{H}$ .



 $h: V(\mathbb{G}) \to V(\mathbb{H})$  is a homomorphism if for every edge  $uv \in E(\mathbb{G})$ :

- $h(u)h(v) \in E(\mathbb{H})$ ,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$ .



#### Universal graph

 $\mathbb{H}$  is k-universal for a class  $\mathcal{F}$  of graphs if every k-edge-coloring of every graph in  $\mathcal{F}$  maps homomorphically to  $\mathbb{H}$ .

#### Smallest universal graph

 $\lambda_{\mathcal{F}}(k)$  – the smallest possible number of vertices in  $\mathbb{H}$  (if no finite  $\mathbb{H}$  exists, we set  $\lambda_{\mathcal{F}}(k) = \infty$ ).



 $h: V(\mathbb{G}) \to V(\mathbb{H})$  is a homomorphism if for every edge  $uv \in E(\mathbb{G})$ :

- $h(u)h(v) \in E(\mathbb{H})$ ,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$ .

#### Universal graph

 $\mathbb{H}$  is k-universal for a class  $\mathcal{F}$  of graphs if every k-edge-coloring of every graph in  $\mathcal{F}$  maps homomorphically to  $\mathbb{H}$ .

#### Smallest universal graph

 $\lambda_{\mathcal{F}}(k)$  – the smallest possible number of vertices in  $\mathbb{H}$  (if no finite  $\mathbb{H}$  exists, we set  $\lambda_{\mathcal{F}}(k) = \infty$ ).



 $h: V(\mathbb{G}) \to V(\mathbb{H})$  is a homomorphism if for every edge  $uv \in E(\mathbb{G})$ :

- $h(u)h(v) \in E(\mathbb{H})$ ,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$ .

#### Universal graph

 $\mathbb{H}$  is k-universal for a class  $\mathcal{F}$  of graphs if every k-edge-coloring of every graph in  $\mathcal{F}$  maps homomorphically to  $\mathbb{H}$ .

#### Smallest universal graph

 $\lambda_{\mathcal{F}}(k)$  – the smallest possible number of vertices in  $\mathbb{H}$  (if no finite  $\mathbb{H}$  exists, we set  $\lambda_{\mathcal{F}}(k) = \infty$ ).

### Theorem (Alon, Marshall '98)

$$k^3 + 3 \le \lambda_{\text{PLANAR}}(k) \le 5k^4$$
.



 $h: V(\mathbb{G}) \to V(\mathbb{H})$  is a homomorphism if for every edge  $uv \in E(\mathbb{G})$ :

- $h(u)h(v) \in E(\mathbb{H})$ ,
- $c_{\mathbb{H}}(h(u)h(v)) = c_{\mathbb{G}}(uv)$ .

#### Universal graph

 $\mathbb{H}$  is k-universal for a class  $\mathcal{F}$  of graphs if every k-edge-coloring of every graph in  $\mathcal{F}$  maps homomorphically to  $\mathbb{H}$ .

#### Smallest universal graph

 $\lambda_{\mathcal{F}}(k)$  – the smallest possible number of vertices in  $\mathbb{H}$  (if no finite  $\mathbb{H}$  exists, we set  $\lambda_{\mathcal{F}}(k) = \infty$ ).

#### Theorem (Alon, Marshall '98)

$$k^3 + 3 \le \lambda_{\text{PLANAR}}(k) \le 5k^4$$
.

#### Theorem (Guśpiel, Gutowski '15)

 $\lambda_{\text{PLANAR}}(k) \leq 8435812575000000 \cdot k^3.$ 

#### **Acyclic coloring**

- Every two adjacent vertices get different colors.
- Vertices of any cycle in the graph get at least 3 different colors.

$$\chi_a(G)$$
,  $\chi_a(\mathcal{F})$ .

#### Theorem (Guśpiel, Gutowski '15)

$$\lambda_{\mathcal{F}}(k) < \infty \iff \chi_{\mathbf{a}}(\mathcal{F}) < \infty.$$

(' \ ightharpoonup ' by Alon, Marshall '98)

 $D(G) = \max \left\{ \frac{|E(G')|}{|V(G')|} : G' \text{ is a nonempty subgraph of } G \right\}.$ 

 $D(\mathcal{F}) = \sup \{D(G) : G \in \mathcal{F}\}.$ 

$$D(G) = \max \left\{ \frac{|E(G')|}{|V(G')|} : G' \text{ is a nonempty subgraph of } G \right\}.$$

$$D(\mathcal{F}) = \sup \{D(G) : G \in \mathcal{F}\}.$$

#### Theorem (Guśpiel, Gutowski '15)

If  $\chi_a(\mathcal{F}) < \infty$ , then

$$k^{D(\mathcal{F})} \leqslant \lambda_{\mathcal{F}}(k) \leqslant Ck^{\lceil D(\mathcal{F}) \rceil}.$$

$$D(G) = \max \left\{ \frac{|E(G')|}{|V(G')|} : G' \text{ is a nonempty subgraph of } G \right\}.$$

$$D(\mathcal{F}) = \sup \{ D(G) : G \in \mathcal{F} \}.$$

#### Theorem (Guśpiel, Gutowski '15)

If  $\chi_a(\mathcal{F}) < \infty$ , then

$$k^{D(\mathcal{F})} \leq \lambda_{\mathcal{F}}(k) \leq C k^{\lceil D(\mathcal{F}) \rceil}$$
.

$$\lambda_{\mathcal{F}}(k)$$
 is  $\Omega(k^{D(\mathcal{F})})$  and  $O(k^{\lceil D(\mathcal{F}) \rceil})$ . Is  $\lambda_{\mathcal{F}}(k) = \Theta(k^{D(\mathcal{F})})$ ?

$$D(G) = \max \left\{ \frac{|E(G')|}{|V(G')|} : G' \text{ is a nonempty subgraph of } G \right\}.$$

$$D(\mathcal{F}) = \sup \{ D(G) : G \in \mathcal{F} \}.$$

#### Theorem (Guśpiel, Gutowski '15)

If  $\chi_a(\mathcal{F}) < \infty$ , then

$$k^{D(\mathcal{F})} \leqslant \lambda_{\mathcal{F}}(k) \leqslant Ck^{\lceil D(\mathcal{F}) \rceil}$$
.

$$\lambda_{\mathcal{F}}(k)$$
 is  $\Omega(k^{D(\mathcal{F})})$  and  $O(k^{\lceil D(\mathcal{F}) \rceil})$ . Is  $\lambda_{\mathcal{F}}(k) = \Theta(k^{D(\mathcal{F})})$ ?

#### **Theorem**

If  $\chi_{\mathsf{a}}(\mathcal{F})<\infty$  and  $\mathsf{D}(\mathcal{F})$  is a rational number, then

$$k^{D(\mathcal{F})} \leqslant \lambda_{\mathcal{F}}(k) \leqslant C' k^{D(\mathcal{F})}.$$

k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil$ 

k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil$ 

k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil, q = q(r, d)$ 





k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil, q = q(r, d)$ 









k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil, q = q(r, d)$ 











orientation of  $\mathbb G$  with indeg  $\leq d$ 





orientation of  $\mathbb{G}$  with indeg  $\leq d$ special q-coloring of V(G)



k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil, q = q(r, d)$ 



orientation of  $\mathbb{G}$  with indeg  $\leq d$  special q-coloring of V(G)



k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil, q = q(r, d)$ 



orientation of  $\mathbb{G}$  with indeg  $\leq d$ special q-coloring of V(G)





k edge colors,  $r = \chi_a(\mathcal{F}), d = \lceil D(\mathcal{F}) \rceil, q = q(r, d)$ 



$$k$$
 edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 

$$G\in \mathcal{F}$$

$$\mathbb{H}$$



k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 





k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 



k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 





k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 





k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 





k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 





k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 





k edge colors,  $\chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 







 $k \text{ edge colors}, \chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ each k-colored edge  $G \in \mathcal{F}$  $t k^{1/t}$ -colored miniedges 7/6



 $k \text{ edge colors}, \chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ each k-colored edge  $G \in \mathcal{F}$  $t k^{1/t}$ -colored miniedges 7/6

 $\mathbb{H}$  $(t k^{1/t}$ -colored miniedges between each pair of vertices)





 $k \text{ edge colors}, \chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ 



 $\mathbb{H}$ (t  $k^{1/t}$ -colored miniedges
between each pair of vertices)

 $\mathbb{H}_0 - k^{1/t}$ -universal graph



 $k \text{ edge colors}, \chi_a(\mathcal{F}) = r, D(\mathcal{F}) = s/t$ edge  $G \in \mathcal{F}$ 



 $(t k^{1/t}$ -colored miniedges between each pair of vertices)

 $\mathbb{H}_0 - k^{1/t}$ -universal graph







## Thank you!

